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ON THE EXISTENCE OF JENKINS–STREBEL DIFFERENTIALS

JINSONG LIU

Abstract

Let S be a compact Riemann surface of genus g > 1. By using Teichmüller theory, a new approach
is obtained to the existence of a Jenkins–Strebel differential with prescribed type and heights
on S. Moreover, the geometric structures of horizontal trajectories of certain classes of quadratic
differentials are discussed.

Introduction

Let S0 be a smooth orientable closed surface of genus g > 1. The set of conformal
structure classes that are not conformally equivalent on S0 is called the Riemann
moduli space, denoted by R(S0). An important problem is to give R(S0) a
parametrization. A significant contribution towards this problem was made by
O. Teichmüller. In the famous papers [30, 31], he first considered the set of isotopy
classes of conformal structures on S0. Now this set is known as the Teichmüller
space T (S0). By using extremal quasi-conformal mappings, Teichmüller proved
that the space T (S0) carries a natural metric and is homeomorphic to the (6g− 6)-
dimensional Euclidean space R

6g−6 in the metric topology. Using the fact that T (S0)
is the ramified covering space of R(S0), Teichmüller obtained a parametrization of
R(S0).

One of the essential tools in Teichmüller’s proof is quadratic differentials theory.
This made Teichmüller the first mathematician to study the geometric properties of
holomorphic quadratic differentials; see [30, 31]. Later, A. Marden and K. Strebel
[20, 21, 25, 28], F. P. Gardiner [10, 11], and other mathematicians studied the
geometric theory of quadratic differentials extensively. In [17, 18], S. Kerckhoff
studied the relationship between Teichmüller space theory and the local Euclidean
geometry induced by the quadratic differentials. He also obtained some results on
the trajectory structures of quadratic differentials by using the length-area method
and the Thurston topology on measured foliations.

Some existence theorems for quadratic differentials with closed trajectories on a
compact Riemann surface were first obtained by J. A. Jenkins [14] and K. Strebel
[25, 26], working from different viewpoints. J. Hubbard and H. Masur [12] and
H. Renelt [24] simultaneously solved the ‘height problem’ via different methods.
Their work shows that one can prescribe an admissible curves system Γ and the
numbers hi > 0. Then there exists a unique Jenkins–Strebel differential of type Γ
on S, and the heights of its cylinders are the given numbers hi (see Section 1).

The theory of quadratic differentials has long played a central role in the study
of Teichmüller theory. However, in this paper we show that Teichmüller theory
can also be useful in the study of quadratic differentials. Here we give a new
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proof of the ‘height problem’ from a Teichmüller theory viewpoint. Our work has
the advantage that more geometric information on quadratic differentials can be
obtained. Following [12, 17], we are mainly concerned with the interplay between
a conformal structure and the ‘flat’ metric structure induced from the Jenkins–
Strebel differential on S. Therefore the surface S can be viewed as a united body of
some Euclidean cylinders. In this way, it is convenient to deal with the trajectory
structures of certain quadratic differentials.

The paper is composed of three sections. In Section 1 we define some terminology
and recall some background. Section 2 is devoted to the proof of the main result.
Other results are left to the last section.

1. Background

Let S0 be a smooth orientable closed surface of genus g (g > 1), and let S be
a compact Riemann surface of the same genus. The surface S0 can be given the
conformal structure Sσ by pulling back the conformal structure of S through the
diffeomorphism σ : S0 −→S. In the following context, the Riemann surfaces S and
the conformal structures Sσ on S0 are terms used interchangeably.

Let the set T̃ (S0) consist of all conformal structures on S0. We define the
equivalence relation ‘∼’ in T̃ (S0) as Sσ1 ∼Sσ2 if and only if there exists a
holomorphic homeomorphism h : Sσ1 −→Sσ2 homotopic to the identity.

Definition 1.1. The Teichmüller space T (S0) is defined to be T (S0)=
T̃ (S0)/ ∼. We denote by [Sσ] ∈ T (S0) the class of conformal structures equivalent
to Sσ.

If S1 and S2 are two compact Riemann surfaces of genus g and f : S1 −→S2 is a
quasi-conformal homeomorphism, we denote by

Kf (z0) =
1 + |µf (z0)|
1 − |µf (z0)|

the dilatation of f at z0, where µf (z) = (∂z̄fdz)/(∂zfdz) is the Beltrami differential
of f . Let Kf = ess supz0∈SKf (z0) be the maximal dilatation of f . In the Teichmüller
space T (S0), the Teichmüller metric dT(·, ·) is defined to be

dT

([
Sσ1

]
,
[
Sσ2

])
= sup

h
log Kh,

where the supremum is taken over all quasi-conformal homeomorphisms
h� id :Sσ1 −→Sσ2 . The Teichmüller space T (S0) is a complete metric space in
the Teichmüller metric dT(·, ·); see [13, 19].

Each non-degenerate ring domain R embedded in the Riemann surface S inherits
a conformal structure from S. Therefore R is conformally equivalent to exactly one
normal flat cylinder

R̃ = {z | 1 < |z| < er}

in the z-plane, where r > 0.

Definition 1.2. With the above notation, the modulus of the ring domain
R⊂S is defined to be r/2π.
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Let Q(S) be the space of holomorphic quadratic differentials ϕ = ϕ(z)dz2 on S. It
is a Banach space in the L1-norm ‖ϕ‖ =

∫∫
S
|ϕ|dx dy. The Riemann–Roch theorem

shows that Q(S) has complex dimension 3g− 3.
Each non-zero quadratic differential ϕ induces a singular metric ds =

√
|ϕ(z)| |dz|.

The ϕ-length of any piecewise smooth curve γ ⊂ S is defined to be

lϕ(γ) =
∫
γ

√
|ϕ(z)| |dz|.

A horizontal trajectory of ϕ is a maximal curve along which ϕ > 0, and a vertical
trajectory of ϕ is a maximal curve along which ϕ < 0. A trajectory is critical if it
meets a singularity (zero) of ϕ when continued in either direction; otherwise it is
regular.

For any simple curve γ ⊂S, it turns out to be important to consider the ϕ-height
of γ, as well as the ϕ-length.

Definition 1.3. Let ϕ∈Q(S) be a non-zero holomorphic quadratic differential.
For any piecewise smooth curve γ ⊂S, the infimum

hϕ(γ) = inf
γ̃∼γ

∫
γ̃

|�√ϕ|,

where γ̃ varies over all piecewise smooth curves in the homotopy class of γ, is called
the height of γ with respect to ϕ.

As in [29], we give the following definition.

Definition 1.4. A non-zero quadratic differential ϕ∈Q(S) is called a Jenkins–
Strebel differential if its non-closed trajectories cover a set of measure zero.

For any Jenkins–Strebel differential ϕ, Strebel [29] gave the following criterion: ϕ
is a Jenkins–Strebel differential if and only if its critical graph C (the set of critical
trajectories and their critical endpoints) is compact. Thus the set S \ C consists of
a collection of cylinders {Rk} swept out by closed horizontal trajectories. We call
{Rk} the characteristic cylinders of the Jenkins–Strebel differential ϕ.

Basic reference sources for the theory of quadratic differentials are [11, 29].

A system of finitely many smooth closed curves {γ1, γ2, . . . , γp} ⊂ S0 is called
admissible if none of the curves γi is homotopically trivial (homotopic to zero),
and if the two curves γi and γj neither intersect nor are freely homotopic for i 	= j.
The maximal number of curves in an admissible system on S0 is 3g− 3; see [11,
Section 10.1]. A ring domain R0 ⊂ S0 is said to be of homotopy type γ if there is
a closed curve γ0 ⊂ R0 that separates its two boundary components and is freely
homotopic to γ.

Let {γ1, γ2, . . . , γp} be an admissible system on S0. A family of non-overlapping
ring domains {R1, R2, . . . , Rp} ⊂ S0 is said to be of homotopy type {γk} if each Rk

is of homotopy type γk for exactly one k.

Definition 1.5. Let {γk} be an admissible system on S0. A Jenkins–Strebel
differential ϕ is said to be of type {γk} if its characteristic cylinders {Rk} have
homotopy type {γk}.
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Let R be a characteristic cylinder of a Jenkins–Strebel differential ϕ. For any
simple vertical arc γ connecting the two boundary components of R, it is easy to
check that the value h =

∫
γ
|�√ϕ| is independent of γ. We call h the ϕ-height of

R, denoted by hϕ(R).
The following used to be a famous problem. It was simultaneously solved by

Hubbard and Masur [12] and by Renelt [24].

Theorem 1.6 [12, 24]. Let {γ1, γ2, . . . , γp} be an admissible curves system on
a compact Riemann surface S. Then, for arbitrary {hk > 0, k = 1, 2, . . . , p}, there
exists a Jenkins–Strebel differential ϕ with type {γk} and ϕ-heights {hk}. Moreover,
ϕ is uniquely determined.

In Sections 2 and 3, we will present a new proof of Theorem 1.6 by using
Teichmüller theory. This shows that Teichmüller theory can also be useful in the
study of quadratic differentials.

2. Proofs of the main results

Let P be a smooth bordered surface of signature (0, 3); that is, it is obtained from
a sphere by cutting away the interiors of three disjointed closed disks. We label its
border components by γ1, γ2 and γ3, respectively.

Lemma 2.1. Let (h1, h2, h3) be a fixed triple of positive numbers. For any
positive triple (l1, l2, l3), the surface P can carry a conformal structure such that
the resulting bordered Riemann surface P has the following properties.

(i) The Riemann surface P admits a Jenkins–Strebel differential ϕ of type
{γ1, γ2, γ3} and the boundary components γ1, γ2, and γ3 are all closed horizontal
trajectories of ϕ.

(ii) In the ϕ-metric, the characteristic cylinders Ri ⊂ P have circumferences li
and heights hi, where i = 1, 2, 3.

Proof. Performing a ‘cut’ along the negative axis, we can always select the
single-valued branch of the analytic function z = z(ζ) = ζq (where q is a rational
number) so that z(1) = 1.

Given the triple (h1, h2, h3), for any positive triple (l1, l2, l3), let

Di = {ξ + iη | 0 � ξ � li/2, 0 � η � hi/2}, i = 1, 2, 3,

be the rectangles in the (ζ = ξ + iη)-plane.
For simplicity, we assume that l1 = max{l1, l2, l3}. Then the triple (l1, l2, l3)

satisfies one of the following.
(1) l1 < l2 + l3. Let A1A

′
1A2A

′
2A3A

′
3 =

⋃
D̃i be the ‘hexagon’ in the z-plane,

where

D̃1 =
(

ζ − l1 + l2 − l3
4

)2/3

(D1),

D̃2 = e(2/3)πi

(
ζ − l2 + l3 − l1

4

)2/3

(D2),



on the existence of jenkins–strebel differentials 369

(a)

A1

A′
1

A2

A′
2

A3

A′
3

(b)

A1
A′

1

A2

A′
2

A3

A′
3

(c)

A1A′
1

A2 A′
2

A3

A′
3

Figure 1.

and

D̃3 = e(4/3)πi

(
ζ − l3 + l1 − l2

4

)2/3

(D3)

as in Figure 1(a). We define ϕ = (3/2)2zdz2, the quadratic differential in the
‘hexagon’ A1A

′
1A2A

′
2A3A

′
3.

(2) l1 = l2 + l3. Set

D̃1 = e(1/4)πi

(
ζ − l2

2

)1/2

(D1),

D̃2 = e(3/4)πiζ1/2(D2),

and

D̃3 = e(1/4)πiζ1/2(D3),

where D3 denotes the conjugation image of D3.
As in Figure 1(b), we denote by A1A

′
1A2A

′
2A3A

′
3 =

⋃
D̃i the ‘hexagon’ in the

z-plane, and we define ϕ = −4z2dz2, the quadratic differential in the ‘hexagon’
A1A

′
1A2A

′
2A3A

′
3.

(3) l1 > l2 + l3. Let A1A
′
1A2A

′
2A3A

′
3 =

⋃
D̃i be the ‘hexagon’ in the z-plane,

where D̃1, D̃2, and D̃3 are three rectangles in the z-plane, as in Figure 1(c). In
coordinate form

A1 =
(

l1
2

,
h1

2

)
, A′

1 =
(

0,
h1

2

)
, A2 =

(
0,−h2

2

)
,

A′
2 =

(
l2
2

,−h2

2

)
, A3 =

(
l1 − l3

2
,
h3

2

)
, A′

3 =
(

l1
2

,−h3

2

)
.

We define ϕ = dz2, the quadratic differential in the ‘hexagon’ A1A
′
1A2A

′
2A3A

′
3.

The bordered Riemann surface P̃ = A1A
′
1A2A

′
2A3A

′
3 has a mirror image P̃ ∗. The

image P̃ ∗ can be glued along the border components {A′
1A2, A

′
2A3, A

′
3A1} to the

original surface P̃ to form a new surface P . The surface P is called the double of
P̃ along {A′

1A2, A
′
2A3, A

′
3A1}. Supposing that z is any local coordinate parameter

of P̃ , then z∗ = z̄ is a local coordinate parameter of P̃ ∗. In terms of the local
parameter z∗, the quadratic differential ϕ = ϕ(z)dz2 on P̃ induces the quadratic
differential

ϕ∗ = ϕ∗(z∗) dz∗2 = ϕ(z∗) dz̄2
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on P̃ ∗. Since the set {A′
1A2, A

′
2A3, A

′
3A1} consists of only horizontal lines or vertical

lines of ϕ, two quadratic differentials ϕ and ϕ∗ coincide on {A′
1A2, A

′
2A3, A

′
3A1}.

By analytic continuation, ϕ and ϕ∗ can be joined into a new quadratic differential
on P , denoted by the same name ϕ.

For i = 1, 2, 3, the arc AiA
′
i and its mirror image together form the border

component γi; these are closed horizontal trajectories of ϕ. From the construction,
the new surface P has the desired properties.

We call Ai the marked point of γi on P , i = 1, 2, 3 respectively.

From now on, let Γ = {γ1, γ2, . . . , γ3g−3} be a maximal finite admissible curves
system on S0. Cutting along Γ, we divide S0 into 2g − 2 topological surfaces of
signature (0,3) and label them by {P1,P2, . . . ,P2g−2}.

In [5], P. Buser introduced the notion of cubic graphs.
A graph G is called 3-regular if each of its vertices has three emanating edges. For

our purpose, it is useful to view each edge of the graph as a union of two half-edges
emanating from one of the two connected vertices.

Definition 2.2. A cubic graph G is a finite 3-regular connected graph. It will
be taken into consideration when welding pairs of pants into a compact Riemann
surface.

For each Pi ∈{P1,P2, . . . ,P2g−2}, we label its border components by
{γi1, γi2, γi3}. Given the maximal admissible system Γ, the cubic graph GΓ

associating to Γ is a graph whose 2g − 2 vertices {yi} are in one-to-one
correspondence with the 2g − 2 surfaces {Pi}, the 3g − 3 edges {ck} correspond to
the 3g−3 closed curves {γk}, and three emanating half-edges {ciµ} of yi appearing
in the graph correspond to the three border components {γiµ} of γi.

In this way, if ciµ and cjυ are two half-edges of the edge ck, we write ck = (ciµ, cjυ).
Therefore the cubic graph GΓ can be fully described by a list ck = (ciµ, cjυ), where
k = 1, 2, . . . , 3g−3. When constructing the Riemann surfaces, it is practical to view
the list itself as a cubic graph.

Now suppose that the positive array H = (h1, h2, . . . , h3g−3) serves as heights
with respect to the admissible system Γ.

Let v = (Lv, Av) ∈ R
3g−3
+ × R

3g−3, where

Lv = (l1, l2, . . . , l3g−3) ∈ R
3g−3
+ , Av = (θ1, θ2, . . . , θ3g−3) ∈ R

3g−3.

For any Pi ∈ {P1,P2, . . . ,P2g−2}, by Lemma 2.1, there exists a conformal structure
on Pi so that the resulting Riemann surface Pi admits a Jenkins–Strebel differential
ϕi, whose characteristic cylinders have circumferences {liµ} and heights {hiµ/2} in
the ϕi-metric.

For µ = 1, 2, 3, as in the proof of Lemma 2.1, we label by ζiµ the marked point of
γiµ on Pi. In the singular ϕi-metric, the horizontal curve γiµ can be parametrized
with constant speed by

t→ γiµ(t), t ∈ [0, 1] and γiµ(0) = γiµ(1) = ζiµ,

where the increasing direction of the parameter t is consistent with the orientation
of γiµ. This parametrization can be also interpreted as a parametrization of γiµ on
S

1 = R/Z instead of [0, 1].
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The conformal structure hH(v) on S0 is defined as follows. For each list ck =
(ciµ, cjυ) in the cubic graph GΓ, the pairs of pants Pi and Pj must be taken into
account. Their border components satisfy

lk = lϕi
(γiµ) = lϕj

(γjυ), for k = 1, 2, . . . , 3g − 3.

Then we can weld pairs of pants Pi and Pj together along the border curves γiµ and
γjυ by identifying points γiµ(t) and γjυ(θk−t) for all t ∈ S

1. The resulting Riemann
surface is denoted by hH(v). Since the curve γiµ is a horizontal closed trajectory
of ϕi and γjυ is a horizontal closed trajectory of ϕj , this welding is possible. The
2g− 2 quadratic differentials {ϕi} are joined into a Jenkins–Strebel differential ϕH

on the Riemann surface hH(v), with type Γ, and the characteristic cylinders {Rk}
have ϕH -heights {hk}.

These gluing operations allow us to define a mapping:

hH : R3g−3
+ × R

3g−3 −→T (S0),
hH(v) = [hH(v)].

The construction shows that the mapping hH : R3g−3
+ × R

3g−3 −→T (S0) is well
defined.

The main result of this paper is the following theorem.

Theorem 2.3. Given a maximal admissible system Γ on S0, for any positive
array H = (h1, h2, . . . , h3g−3), the mapping hH : R3g−3

+ × R
3g−3 −→T (S0) is a

homeomorphism.

The proof of Theorem 2.3 will be deferred to Section 3. We deduce Theorem 1.6
from Theorem 2.3 first.

Proof of Theorem 1.6. Let {γ1, γ2, . . . , γp} be an admissible system on S and
(h1, h2, . . . , hp) be the heights corresponding to {γ1, γ2, . . . , γp}. Then p � 3g − 3.

If p = 3g−3, we set H = (h1, h2, . . . , h3g−3). Theorem 2.3 shows that the mapping

h−1
H : T (S0)−→R

3g−3
+ × R

3g−3

is a homeomorphism. By using the data h−1
H ([S]), we obtain a Jenkins–Strebel

differential ϕH ∈ Q(S) of type {γ1, γ2, . . . , γp}, and its characteristic cylinder Rk

has height hk, where 1 � k � p.
If p < 3g − 3, then 3g − 3 − p additional simple closed curves {γp+1, . . . , γ3g−3}

can be added to {γ1, γ2, . . . , γp} so that Γ = {γ1, γ2, . . . , γp, γp+1, . . . , γ3g−3} is a
maximal admissible system on S0; see [11, Section 10.1].

For any positive vector ε = (ε1, ε2, . . . , ε3g−3−p), there exists a Jenkins–Strebel
differential ϕε ∈ Q(S) of type Γ and heights (h1, . . . , hp, ε1, . . . , ε3g−3−p). Now,
assuming that ε→ 0+, we claim that the norms ‖ϕε‖ are uniformly bounded.
Hence as ε→ 0+, the quadratic differentials ϕε converge uniformly to a quadratic
differential ϕ, with the prescribed type {γ1, γ2, . . . , γp}, and its characteristic
cylinders have heights (h1, h2, . . . , hp).

In order to show that the norms ‖ϕε‖ are uniformly bounded, we review the
following lemma in [29] about the minimal sum of the weighted sum of the
reciprocals of moduli. This lemma plays a crucial role throughout this paper. For
the sake of completeness, we present a simple proof here.
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Lemma 2.4. Let ϕ 	= 0 be a Jenkins–Strebel differential of type {γ1, γ2, . . . , γp},
and suppose that its characteristic cylinder {Rk} has heights {hk} on S. Let R̃k

be a system of non-overlapping ring domains on S with the homotopy type {Rk};
then their moduli M̃k satisfy

∑ h2
k

M̃k

�
∑ h2

k

Mk
,

with equality if and only if R̃k = Rk for each k.

Proof. If a degenerate ring domain R̃k occurs, then there is nothing to do.
Therefore we assume that M̃k > 0 for all k.

We map R̃k, after cutting it radially, onto a horizontal rectangle S̃k of the z-
plane. S̃k is normalized such that it has height hk and length ãk = hk/M̃k. Using
z = x + iy as a parameter, one gets

ak �
∫
|ϕ(z)|1/2 dx,

where the integration is along any complete horizontal line of S̃k.
Applying the Schwarz inequality, we obtain

akhk �
∫ ∫

S̃k

|ϕ(z)|1/2 dx dy,

∑
akhk �

∑ ∫ ∫
S̃k

|ϕ(z)|1/2 dx dy =
∫ ∫

∪S̃k

|ϕ(z)|1/2 dx dy,

(∑
akhk

)2

�
(∑

ãkhk

) ∫ ∫
∪S̃k

|ϕ(z)| dx dy

�
(∑

ãkhk

) ∫ ∫
S

|ϕ(z)| dx dy

=
(∑

ãkhk

) (∑
akhk

)
.

This proves that
∑

akhk =
∑ h2

k

Mk
�

∑ h2
k

M̃k

.

If the equality holds, then all the inequalities must be equalities. Therefore R̃k

is a subannulus of Rk, swept out by closed trajectories, and ∪S̃k = S; thus
R̃k = Rk.

Remark 2.5. Lemma 2.4 is the starting point of the proof of Theorem 1.6 given
in [29].

Proof of Theorem 1.6. From ε = (ε1, ε2, . . . , ε3g−3−p)→ 0+, we see that
εi � εi(0) for some ε0 = (ε1(0), . . . , ε3g−3−p(0)). Theorem 2.3 shows there exists
a Jenkins–Strebel differential ϕε0 ∈ Q(S) with type Γ, and its characteristic
cylinders {Rk} have heights (h1, . . . , hp, ε1(0), . . . , ε3g−3−p(0)). Assuming that the
characteristic rings of ϕε0 have moduli {Mk}, and that the characteristic cylinders
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of ϕε have moduli {Mε
k}, by applying Lemma 2.4 we obtain

‖ϕε‖ =
p∑

k=1

h2
k

Mε
k

+
3g−3−p∑

k=1

ε2
k

Mε
k

�
p∑

k=1

h2
k

Mk
+

3g−3−p∑
k=1

ε2
k

Mk

�
p∑

k=1

h2
k

Mk
+

3g−3−p∑
k=1

εk(0)2

Mk

= ‖ϕε0‖.

The uniqueness part of Theorem 1.6 follows immediately from Lemma 2.4.
Thus the proof of Theorem 1.6 is complete.

3. Proof of Theorem 2.3

Both the spaces R
3g−3
+ × R

3g−3 and T (S0) are homeomorphic to the (6g − 6)-
dimensional Euclidean space R

6g−6. In order to prove the assertion of Theorem 2.3
(that is, that the mapping hH : R3g−3

+ × R
3g−3 −→T (S0) is a homeomorphism), it

is sufficient to check the following three assertions by Brouwer’s theorem on the
invariance of a domain:

(1) hH is continuous;
(2) hH is injective;
(3) hH is proper.

Let {vn}n=1,2,... ⊂ R
3g−3
+ × R

3g−3 be a sequence satisfying vn → v0 ∈ R
3g−3
+ ×

R
3g−3. As a notational abbreviation, we write

vn = (ln, θn) ∈ R
3g−3
+ × R

3g−3, for n = 0, 1, . . . .

Then ln → l0, θn → θ0.
Denote Q−→T (S0) the fibre bundle, whose fibre above a point [Sσ] ∈ T (S0) is

the quadratic differential space Q(Sσ). Let Σ be the space of free homotopy classes
of simple closed curves on S0, and let R

Σ be the functional space of Σ. Then as an
infinite-dimensional linear space, the space R

Σ inherits the product topology.
In the product topology, Hubbard and Masur [12] showed that the mapping

p : Q−→T (S0) × R
Σ,

p((Sσ, ϕ)) = (Sσ, γ →hϕ(γ)),

is continuous.
To each [hH(vn)] ∈ T (S0), let ϕ

(n)
H be the quadratic differential on hH(vn)

with type Γ and heights {hk}. (When there is no confusion, the superscript (n)
is omitted.) From the explicit construction of quasi-conformal homeomorphisms,
we can easily deduce that the set {τn = (hH(vn), ϕH)}(n = 1, 2, . . .) lies in a
compact set of the space Q. By passing to a subsequence, we may assume that
τnk

→ τ0 = (Sσ, ϕ0) ∈ Q as k→ + ∞. Since all the quadratic differentials ϕH

on hH(vn) have type Γ and heights {hk}, where n = 1, . . ., the continuity of
p : Q−→T (S0) × R

Σ and, [12, Lemma 2.10] show that the quadratic differential
ϕ0 ∈ Q(Sσ) also has type Γ, and its characteristic cylinders have heights {hk}.
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Similarly, τ ′
nk

= (hH(vnk
),−ϕH)→ τ ′

0 = (Sσ,−ϕ0) as k→∞. Thus we have
τ0 = (hH(v0), ϕH). This immediately implies that Sσ = hH(v0). By a standard
argument, we conclude that τn → τ0 as n→∞. The above argument shows that
hH(vn)→hH(v0), which proves assertion (1).

Assertion (2) is a consequence of the monotonicity condition in Lemma 2.4.
In order to prove assertion (3), we shall show that if any sequence {vn}n=1,2... ⊂

R
3g−3
+ ×R

3g−3 approaches the boundary of R
3g−3
+ ×R

3g−3, then {hH(vn)}
approaches the boundary of T (S0). Roughly speaking, the assertion that vn

approaches the boundary of R
3g−3
+ × R

3g−3 is equivalent to one or more of the
following statements.

(i) As n→+∞, l
(n)
k →+∞ for some fixed k, 1� k � 3g − 3.

(ii) As n→+∞, l
(n)
k →+0 for some fixed k, 1� k � 3g − 3.

(iii) As n→+∞,

c < l
(n)
k < C and

3g−3∑
k=1

∣∣θ(n)
k

∣∣→ + ∞,

where c, C > 0 are two positive constants independent of n.
Given the vector v∗ = (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ R

3g−3
+ × R

3g−3, we obtain the
Riemann surface hH(v∗) ∈ T (S0) with the quadratic differential ϕ∗

H of type Γ, and
its characteristic cylinders {R∗

k} have heights {hk}. Denote the moduli of {R∗
k} by

{M∗
k}.

Let fn : hH(v∗)−→hH(vn) be the extremal quasi-conformal homeomorphism
homotopic to the identity, with maximal dilatation Kfn

= Kn. Supposing that
R̃

(n)
k = fn(R∗

k) is the image ring domain on hH(vn) and denoting the modulus of R̃
(n)
k

by M̃
(n)
k , we have 1/M̃

(n)
k �Kn/M∗

k . Summing this inequality over all characteristic
cylinders on the surface hH(v∗), one obtains

∑ h2
k

M̃
(n)
k

� Kn

∑ h2
k

M∗
k

.

Let M
(n)
k be the modulus of the characteristic cylinder of ϕ

(n)
H on hH(vn). It is

immediate from Lemma 2.4 that∑ h2
k

M
(n)
k

�
∑ h2

k

M̃
(n)
k

� Kn

∑ h2
k

M∗
K

.

That is, ∑ (
hk · l(n)

k

)
� Kn

∑
(hk · 1).

The left- and right-hand sides of the above inequality are the norms of ϕ
(n)
H and

ϕ∗
H respectively. In case (i), l

(n)
k → + ∞ as n→ + ∞; hence Kn → + ∞. Thus

dT (hH(v∗), hH(vn)) = log Kn → + ∞,

which proves case (i).
Let i : R(n)

k −→hH(vn) be the embedding mapping. In the complete hyperbolic
metric ρ on R

(n)
k , the ρ-length of the geodesic in homotopy class [γk] is

lρ([γk]) =
π

M
(n)
k

=
π · l(n)

k

hk
→ + 0.
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γk

Pi Pj

(b)

γk Pi

δk
������

���������

(a)

Figure 2.

Ahlfors’ lemma (see [2]) on decreasing hyperbolic metrics between R
(n)
k and hH(vn)

and Wolpert’s lemma [1, § 2.2, Theorem 4]) show that dT(hH(v∗), hH(vn))→ +∞
as n→∞, which implies that case (ii) holds.

To prove case (iii), the following result is needed.
Denote by M(S0) the mapping class group of S0. M(S0) serves as the modular

group acting on the Teichmüller space T (S0). If N = (n1, n2, . . . , n3g−3) is an
integer array, we define [fN ] ∈ M(S0) as an element of M(S0) by applying nk times
Dehn twists with respect to γk for 1 � k � 3g − 3.

Lemma 3.1. Two integer arrays N = Ñ if and only if [fN ] = [fÑ ] in the group
M(S0).

Proof. If N 	= Ñ , then nk 	= ñk for some k ∈ {1, 2, . . . , 3g − 3}.
From the pair ck = (ciµ, cjυ) in the cubic graph GΓ, we set Xk = Pi ∪ γk ∪ Pj

and choose the simple closed curve δk as in Figures 2(a) and (b). (Figure 2(a)
corresponds to Pi = Pj and Figure 2(b) corresponds to Pi 	= Pj .)

Obviously, the homotopy classes [δk] ∩ [γi] = ∅ if and only if i 	= k. Because [γk]
is not trivial, then [fN ]([δk]) 	= [fÑ ]([δk]); thus [fN ] 	= [fÑ ] in M(S0).

The lemma is proved.

Now let us proceed with the proof of Theorem 2.3.
For each n, by setting ṽn = (1, 1, . . . , 1, [θ(n)

1 ], [θ(n)
2 ], . . . , [θ(n)

3g−3]), where [θ(n)
k ] is

the Gauss sign, we obtain

dT(hH(v∗), hH(vn)) � dT(hH(v∗), hH(ṽn)) − dT(hH(ṽn), hH(vn)).

The facts that c < l
(n)
k < C and 0 � θ

(n)
k − [θ(n)

k ] < 1 imply that dT(hH(ṽn),
hH(vn)) � M for some constant M > 0 independent of n. Hence

dT(hH(v∗), hH(vn)) � dT(hH(v∗), hH(ṽn)) − M.

To avoid notational complication, we suppose that all θ
(n)
k are integers; then

ṽn =
(
1, . . . , 1, θ

(n)
1 , . . . , θ

(n)
3g−3

)
.

Let θn = (θ(n)
1 , . . . , θ

(n)
3g−3), where n = 1, 2, . . . . From the definition, hH(ṽn) =

[fθn
](hH(v∗)) as points in the Teichmüller space T (S0). Since

∑3g−3
k=1 |θ(n)

k |→ +∞,
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without loss of generality, we assume that θn 	= θm if n 	= m. Lemma 3.1 shows
that [fθn

] 	= [fθm
]. Therefore

dT(hH(v∗), hH(ṽn)) = dT

(
hH(v∗),

[
fθn

]
(hH(v∗)

)
→ + ∞

follows from the discreteness of Teichmüller modular group M(S0) acting on the
Teichmüller space T (S0). Hence

dT(hH(v∗), hH(vn)) � dT(hH(v∗), hH(ṽn)) − M →+∞,

which proves assertion (3).
Therefore the proof of the ‘height problem’ is complete.
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