中国科学院数学与系统科学研究院
数学研究所
中国科学院华罗庚数学重点实验室
华罗庚青年数学论坛
综合报告
报告人: 杨梓诠 博士(University of Wisconsin–Madison)
题 目:Some Recent Progress on the Tate and BSD Conjectures in Positive Characteristics
时 间:2023.09.15(星期五),09:00-10:00
地 点:Zoom会议:878 7991 3533 密码:0915
摘 要:I will report on some recent progress on the Tate and BSD conjectures in positive characteristics. Generalizing the case for K3 surfaces, we prove the Tate conjecture for all varieties with h^{2, 0} = 1 under a mild assumption on moduli. As an application,we prove the BSD conjecture for height 1 elliptic curves over function fields of genus 1. Time permitting, I will say a word on the relationship between the Tate/BSD conjecture and finiteness statements in arithmetic geometry. The main content is based ona joint work with Paul Hamacher and Xiaolei Zhao.