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Maxwell equations: A short history

The electrical field is defined as the force experienced by a unit positive
charge in space. By Coulomb Law (1785):

E(x) = q
x− y
|x− y|3

, for point charge q at y ∈ R3.

For the charge density ρ, the electric field is

E(x) =

∫

R3
ρ(y)

(x− y)

|x− y|3
dy = −∇

∫

R3

ρ(y)

|x− y|
dy.
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|x− y|3

, for point charge q at y ∈ R3.

For the charge density ρ, the electric field is
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∫
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dy = −∇

∫
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|x− y|
dy.

By studying this function, Gauss finds Gauss divergence theorem and Gauss
Law (1813), the first Maxwell equation,

divE = 4πρ.
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The magnetic field generated by a steady current I over a curve C is given
by the Biot-Savart Law (1820)

B(x) =
1

c

∫

C

Idl× (x− y)

|x− y|3
, c = 2.9× 1010 cm/sec.

If J is the current density, then

B(x) =
1

c

∫

R3

J(y)× (x− y)

|x− y|3
dy = −

1

c

∫

R3
J(y)×∇x

(
1

|x− y|

)
dy,

Since ∇× (ψA) = ∇ψ ×A+ ψ∇×A,

B(x) =
1

c
∇×

∫

R3

J(y)

|x− y|
dy.
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B(x) =
1

c
∇×

∫

R3

J(y)

|x− y|
dy.

By the identity ∇×∇×A = ∇(divA)−∆A,

∇×B(x) =
1

c
∇
(

div

∫

R3

J(y)

|x− y|
dy

)
−

1

c
∆

∫

R3

J(y)

|x− y|
dy.

For the steady current, divJ = 0, this implies by Gauss theorem

∇×B(x) =
4π

c
J(x).

It is obvious to obtain the fourth Maxwell equation

div B = 0.
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By Faraday Law (1831), for any surface S with boundary C and unit normal
vector n

∫

C

E · dl = −
1

c

∂

∂t

∫

S

B · nds(x).

By Stokes theorem (1854)

∫

C

E · dl =

∫

S

∇× E · nds(x),

one obtains the third Maxwell equation

∇× E +
1

c

∂B

∂t
= 0.
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one obtains the third Maxwell equation
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1

c

∂B

∂t
= 0.

[Kelvin, 2 July 1850] letter to Stokes, problem in the exam of Smith Prize
in 1854.
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divE = 4πρ, ∇×B =
4π

c
J, ∇× E +

1

c

∂B

∂t
= 0, divB = 0.

The equations are not symmetric in time. The problem is due to the steady
current condition divJ = 0 in Biot-Savart law.
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*Jinchang Shao, Stokes Theorem and Electomagnetism, Math. Propag, 18 (1994), 6-17.
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The finite element method: a short histrory

The word ”FEM” first appeared in [Clough, 1960], earlier names ”direct
stiffness method” (Boeing) or ”variational difference method” (former USSR
and China).

1. Model: The extension of standard structure analysis method in which
structure is treated as an assemblage of structure element, no need to
consider convergence;

2. Mathematics: An approximation method for solving differential or integral
equations, need to consider convergence, error estimation, adaptivity.
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Mathematical development of FEM

The approximation method to derive Euler equation for variational problems.

[Leibnitz, 1696] (Letter to Johann Bernoulli) for brachistochrone:

T =

∫ B

A

√
1 + y′2
√

2gy
dx.

[Euler, 1807] for the function minimizing the general functional

J(y) =

∫ b

a

Z(x, y, y′)dx.
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Variational method for Dirichlet problem of Laplace equation:

min
u=g on ∂Ω

∫

Ω

|∇u|2dx.

[Hilbert, 1901] existence of minimizer.
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Variational method for Dirichlet problem of Laplace equation:

min
u=g on ∂Ω

∫

Ω

|∇u|2dx.

[Hilbert, 1901] existence of minimizer.

[Ritz, 1909], [Galerkin, 1915] proposed the Ritz-Galerkin method for solving
variational problem, not using piecewise polynomials.

[Courant, 1943] used the piecewise linear functions, the Courant element,
no convergence proof.
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Engineering development of FEM

The analysis of frames and structure by computer started the era of
modern finite element method in engineering community: [Langefors, 1952],
[Turner, 1956], [Argyris, 1960]. NASA started the project of NASTRAN
programm in 1965.

[Melosh, 1962] in his PhD thesis recognized the relation of FEM in the
sense of [Clough, 1960] and the variational principle.

After 1963, the finite element method as the approximation method
dominated. The convergence is taken as for granted.
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The finite element method

The variational problem: Find u ∈ H1
0(Ω) such that

∫

Ω

a(x)∇u · ∇vdx =

∫

Ω

fvdx ∀v ∈ H1
0(Ω).



The finite element method

The variational problem: Find u ∈ H1
0(Ω) such that

∫

Ω

a(x)∇u · ∇vdx =

∫

Ω

fvdx ∀v ∈ H1
0(Ω).

Mh: shape regular mesh of Ω.

Vh ⊂ H1
0(Ω): conforming linear finite element space.

The finite element method: Find uh ∈ Vh such
that

∫

Ω

a(x)∇uh · ∇vh =

∫

Ω

fvh, ∀vh ∈ Vh.
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A priori error estimate

The error in energy norm satisfies

|||u− uh|||Ω ≤ Chσ‖u‖H1+σ(Ω), 0 < σ ≤ 1,

where h = maxK∈Mh
hK, and |||φ|||2Ω =

∫
Ω
a(x)|∇φ|2 dx.

[Friedrichs, 1962] proved the convergence in H1 for linear element.
[Oganesjan, 1963] proved the error estimate for H2 solutions.
[Feng, 1965] convergence, also quadrilateral meshes with hanging nodes.

[Strang-Fix, 1972], [Ciarlet, 1978] text books on finite element method.
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where h = maxK∈Mh
hK, and |||φ|||2Ω =

∫
Ω
a(x)|∇φ|2 dx.

[Friedrichs, 1962] proved the convergence in H1 for linear element.
[Oganesjan, 1963] proved the error estimate for H2 solutions.
[Feng, 1965] convergence, also quadrilateral meshes with hanging nodes.

[Strang-Fix, 1972], [Ciarlet, 1978] text books on finite element method.

*I. Babuska, Courant element: before and after, In Finite Element Methods: Fifty years

of the Courant element, by Michel Krizek, Pekka Neittaanmaki, Rolf Stenberg (Editors),

CRC Press, 1994.
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A Posteriori error estimate

Theorem [Babuska-Rheinboldt,1978] Let a(x) = 1 in Ω. We have

C1

( J∑

i=1

η2
i

)1/2

≤ |||u− uh|||Ω ≤ C2

( J∑

i=1

η2
i

)1/2

,

where {xi}Ji=1 is the set of interior nodes,
{ψi}Ji=1 is the set of nodal basis functions of
Vh, Si = supp(ψi), i = 1, · · · , J , and

−∆wi = f in Si, wi = uh on ∂Si.

ηi = ‖∇(wi − uh)‖L2(Si)
,
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Outline of the proof

Notice that
∑J
i=1ψi = 1, denote v = u− uh ∈ H1

0(Ω), for any vh ∈ Vh,

∫

Ω

∇(u− uh) · ∇vdx =

∫

Ω

∇(u− uh) · ∇(v − vh)dx

=

J∑

i=1

∫

Si

∇(u− uh) · ∇[ψi(v − vh)]dx

=

J∑

i=1

∫

Si

∇(wi − uh) · ∇[ψi(v − vh)]dx

≤
(

J∑

i=1

η2
i

)1/2( J∑

i=1

‖∇[ψi(v − vh)]‖2
L2(Si)

)1/2

.
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The key is the existence of an interpolation function vh ∈ Vh such that

J∑

i=1

‖∇[ψi(v − vh)]‖2
L2(Si)

≤ C‖∇v‖2
L2(Ω).

The paper uses a complicated construction. A simpler one is known
[Clement, 1975]. This is the upper bound. For the lower bound, we have

J∑

i=1

η2
i =

J∑

i=1

∫

Si

∇(wi − uh) · ∇(wi − uh)dx

=

J∑

i=1

∫

Si

∇(wi − uh) · ∇(u− uh)dx

≤ C

(
J∑

i=1

η2
i

)1/2

‖∇(u− uh)‖L2(Ω).
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A Posteriori error estimate

The a posteriori error estimate in [Babuska-Rheinboldt,1978] is not fully
computable.

Theorem [Babuska-Miller,1987] We have

|||u− uh|||Ω ≤ C
( ∑

K∈Mh

η2

K

)1/2

,

where

η2

K
= ‖hKf ‖2

L2(K) +
∑

e⊂∂K

‖h1/2
e Je ‖2

L2(e),

Je =
(
(a(x)∇uh)|K1 − (a(x)∇uh)|K2

)
· νe.

K2

νe

K1
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The local lower bound

Theorem [Verfürth,1989] We have

|||u− uh|||2K∗ ≥ C1η
2
K − C2

∑

T⊂K∗
‖hT (f − fT ) ‖2

L2(T ),

where fT = 1
|T |
∫
T
f dx, ∀ T ∈Mh.

K

K∗
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The adaptive finite element method

‖u− uh‖2
H1(Ω) =

∑

K∈Mh

‖u− uh‖2
H1(K) ≈ C

∑

K∈Mh

η2
K
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1

2
max
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ηK, refine K ∈Mh.



The adaptive finite element method

‖u− uh‖2
H1(Ω) =

∑

K∈Mh

‖u− uh‖2
H1(K) ≈ C

∑

K∈Mh

η2
K

Error equi-distribution strategy [Babuska-Rheinboldt,1978]:

if ηK >
1

2
max
K∈Mh

ηK, refine K ∈Mh.

Optimal computation complexity:

‖u− uh‖H1(Ω) = O(N−1/d).
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Numerical experiments

Let Ω = (−1, 1)× (−1, 1).
We solve the equation
−∇ · (a(x)∇u) = 0 in Ω. Set
a(x) ≈ 161.45 in the first and third
quadrants, and a(x) = 1 in the
second and fourth quadrants.

An exact solution is constructed by
[Kellogg,1975]: u = r0.1µ(θ),
µ is smooth. Then
u ∈ H1+σ(Ω), σ < 0.1.
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FEM with uniform mesh
128× 128 mesh: |||u− uh|||Ω = 0.8547
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FEM with uniform mesh
128× 128 mesh: |||u− uh|||Ω = 0.8547
512× 512 mesh: |||u− uh|||Ω = 0.7981
1024× 1024 mesh: |||u− uh|||Ω = 0.6954

Convergence rate: h0.08

A priori error estimate implies that one must introduce 1011 nodes in each
space direction to reduce the energy error below 0.1!
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The adaptive mesh of 2673 nodes. The energy error is 0.07451.
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The eddy current model: H − ψ formulation





curl H = ε
∂E

∂t
+ J in R3, (Ampere-Maxwell’s law)

µ
∂H

∂t
+ curl E = 0 in R3, (Farady’s law)

div(µH) = 0 in R3,

where J = σ E in Ωc, Js in R3 \ Ω̄c.
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Literature remarks

Finite element method for Maxwell equations:

• [Nedelec, 1980] H(curl) conforming finite element, edge element

• [Hiptmair, 2002] Acta Numerica, [Monk, 2003] Clarendon Press

A posteriori error estimates for Maxwell equations:

• [Monk, 1998], [Beck-Deuflhard-Hiptmair-Hoppe-Wohlmuth, 1999]
smooth domain

• [Zheng-C.-Wang, 2006], [C.-Wang-Zheng, 2007] Birman-Solomyak

• [Schöberl, 2007] A new interpolation operator
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A posteriori error estimate

Theorem [Zheng-C.-Wang, 2006] Let e = H(t)−Hh(t).

‖√µ e(tm)‖2
0,Ω + ‖curl e‖2

L2((0,T ); L2(Ω)) ≤ C
m∑

n=1

τn

{(
ηn

time

)2
+
(
ηn

space

)2
}
,

where the a posteriori error estimates are given by

(
ηn

time

)2
= ‖curl(Hn −Hn−1)‖2

0,Ωc
+ τ−1

n ‖f − f̄n‖2
L2((tn−1,tn); L2(Ω)),

(
ηn

space

)2

=
∑

T∈Tn

(
ηn0,T

)2

+
∑

T∈T cn

(
ηn1,T

)2

+
∑

F∈FΩ
n

(
ηn0,F

)2

+
∑

F∈FΩc
n

(
ηn1,F

)2

+
∑

F∈F∂Ω
n

(
ηn0,B,F

)2

,
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with the local error indicators defined by

ηn0,T := hT

∥∥∥∥div
(

f̄n − µ
∂Hh

∂t

)∥∥∥∥
0,T

,

ηn1,T := hT

∥∥∥∥f̄n − µ
∂Hh

∂t
− curl(σ−1 curl Hn)

∥∥∥∥
0,T

,

ηn0,F :=
√
hF

∥∥∥∥
[(

f̄n − µ
∂Hh

∂t

)
· n
]

F

∥∥∥∥
0,F

,

ηn1,F :=
√
hF

∥∥∥
[
σ−1curl Hn × n

]
J,F

∥∥∥
0,F

,

ηn0,B,F :=
√
hF

∥∥∥∥
(

f̄n − µ
∂Hh

∂t

)
· n
∥∥∥∥

0,F

.

Here FΩ
n , FΩc

n , and F∂Ω
n denote the edges in Ω, in Ωc, and on ∂Ω

respectively.
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Numerical example

Team Workshop Problem 7. This problem consists of an aluminum plate
with a hole above which a racetrack shaped coil is placed. The aluminum
plate has a conductivity of 3.526× 107 Siemens/Metre and the sinal
driving current of the coil is 2742 Ampere/Turn. The frequency of the
driving current is ω = 50 Hertz.
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We set Ω to be a cubic domain with one-meter edges and start the
computation with zero initial value. We compare the peak values of the
vertical magnetic flux µHz with measured values on some points. These
points are located at y = 72 mm, z = 34 mm, and x = (18× i) mm where
i = 0, · · · , 16.

An adaptively refined mesh of 2,263,668 elements after 18 adaptive
iterations from 77,760 initial elements.
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Numerical values of µHz withM = 55, Ntotal = 5, 555, 550, ηtotal = 0.0126,
the number of degrees of freedom on TM is 36,714.
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ηtotal = 0.0105, the number of degrees of freedom on TM is 120,558.
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M. Clemens, J. Lang, D. Teleaga, and G. Wimmer [JCM 2009, 642-656]

Automatic control of discretization errors is quite attractive from a practical
point of view. Time consuming validation of numerical solutions usually
done through parameter tuning in repeated calculations is no longer needed.
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Circuit simulation

Let Ω = Ωc ∪ Ωnc. The Ωc is fed byN external sinusoidal voltage generators
through electrodes S1, · · · , SN , Γ = ∂Ω and Γe = ∪Nj=1Sj,

∇× E = −iωµH, ∇×H = σ(x)E,

(∇× E) · ν|Γ\Γe = 0, E× ν|Γe = 0.

Motivation: Parasitic parameter (resistance, inductance) extraction of large
scale integrated circuits

Sk

S2

S1
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A posteriori error estimate

Theorem [Chen-C.-Cui-Zhang, 2010] We have

‖∇ × (A−Ah)‖L2(Ω) + α‖A−Ah ‖L2(Ωc) ≤ Cmin(1, α)−1(
∑

T∈Mh

η2
T )1/2,

= where α =
√
s2ωσµ and, for any T ∈Mh,

η2
T = h2

T‖ s
2µJs − s2σµ(s−1∇φ0 + iωAh) ‖2

L2(T )

+ h2
T‖ s

2µσdiv(s−1∇φ0 + iωAh) ‖2
L2(T )

+
∑

F∈F,F⊂∂T

hF‖ [[ν ×∇×Ah]]F ‖2
L2(F )

+
∑

F∈F,F⊂∂T

hF‖ [[s2σµ(s−1∇φ0 + iωAh) · ν]]F ‖2
L2(F ).
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Numerical example

The structure of the ”circuit of addition” (1 billion elements).
By Tao Cui (LSEC) and Hengliang Zhu, Xuan Zeng (Fudan University).
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The adaptively refined mesh of the ”circuit of addition”.
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The quasi-optimality of the adaptive finite element method.
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Contents

1. The eddy current problems: Finite element method and adaptivity

2. The scattering problems: Perfectly matched layer and source transfer

3. The inverse obstacle scattering problems: Reverse time migration method
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The time-harmonic waves

∆u+ k(x)2u = f(x) in Rd\D̄, d = 1, 2, 3,

u = g on ΓD, r
d−1

2

(
∂u

∂r
− iku

)
→ 0 as r = |x| → ∞.

Here k(x) = ω/c(x) is constant outside some compact set; f(x) is
compactly supported.
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The Sommerfeld radiation condition

∆u+ k2u = f in R3

Fundamental solution: G(x, y) = eik|x−y|

4π|x−y|,

∆G(x, y) + k2G(x, y) = −δy(x) in R3;



The Sommerfeld radiation condition

∆u+ k2u = f in R3

Fundamental solution: G(x, y) = eik|x−y|

4π|x−y|,

∆G(x, y) + k2G(x, y) = −δy(x) in R3;

Integral representation: let supp(f) ⊂ BR, for x ∈ BR,

u(x) = −
∫

BR

G(x, y)f(y)dy +

∫

∂BR

(
∂u(y)

∂r(y)
G(x, y)−

∂G(x, y)

∂r(y)
u(y)

)
dy.



The Sommerfeld radiation condition

∆u+ k2u = f in R3

Fundamental solution: G(x, y) = eik|x−y|

4π|x−y|,

∆G(x, y) + k2G(x, y) = −δy(x) in R3;

Integral representation: let supp(f) ⊂ BR, for x ∈ BR,

u(x) = −
∫

BR

G(x, y)f(y)dy +

∫

∂BR

(
∂u(y)

∂r(y)
G(x, y)−

∂G(x, y)

∂r(y)
u(y)

)
dy.

Radiation condition: The integral on ∂BR should vanish when R→∞.
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lim
R→∞

∫

∂BR

(
∂u(y)

∂r(y)
G(x, y)−

∂G(x, y)

∂r(y)
u(y)

)
dy = 0.

It is obvious G(x, y) = O(r(y)−1), ∂G(x,y)
∂r(y)

= O(r(y)−1), r(y) = |y|.
However, the integral does not vanish if we impose

u(y) = O(r(y)−1),
∂u(y)

∂r(y)
= O(r(y)−1).



lim
R→∞

∫

∂BR

(
∂u(y)

∂r(y)
G(x, y)−

∂G(x, y)

∂r(y)
u(y)

)
dy = 0.

It is obvious G(x, y) = O(r(y)−1), ∂G(x,y)
∂r(y)

= O(r(y)−1), r(y) = |y|.
However, the integral does not vanish if we impose

u(y) = O(r(y)−1),
∂u(y)

∂r(y)
= O(r(y)−1).

Observing that ∂G(x,y)
∂r(y)

− ikG(x, y) = O(r(y)−2), [Sommerfeld, 1898]

imposed instead,

u→ 0, r

(
∂u

∂r
− iku

)
→ 0 as r →∞.
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Under the Sommerfeld radiation condition, we have the existence and
uniqueness

u(x) = −
∫

R3
G(x, y)f(y)dy.



Under the Sommerfeld radiation condition, we have the existence and
uniqueness

u(x) = −
∫

R3
G(x, y)f(y)dy.

The above method does not apply to the general problem with
inhomogeneous k(x) or with the scatterer D 6= ∅.

Uniqueness: [Rellich 1943]
Existence: [Colton-Kress, 1983], [McLean, 2000] (method of BIE).



Under the Sommerfeld radiation condition, we have the existence and
uniqueness

u(x) = −
∫

R3
G(x, y)f(y)dy.

The above method does not apply to the general problem with
inhomogeneous k(x) or with the scatterer D 6= ∅.

Uniqueness: [Rellich 1943]
Existence: [Colton-Kress, 1983], [McLean, 2000] (method of BIE).

”By uniqueness ... we may be convinced that the unique solution of the
mathematical problem is identical to the solution that is realized in nature.”
[Sommerfeld, 1949]
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The limiting absorption principle

Let uε ∈ H1(Rd), ε > 0, be the solution of

∆uε + (1 + iε)k(x)2uε = f in Rd, uε = g on ΓD.

It can be proved

‖uε‖H1,−s(Rd\D̄) ≤ C(‖f‖H1(Rd)′ + ‖g‖H1/2(ΓD)), s > 1/2.

where for any s ∈ R, ‖v‖H1,s(D) =
(
‖v‖2

L2,s(D)
+ ‖∇v‖2

L2,s(D)

)1/2

and

‖v‖L2,s(D) =
(∫
D(1 + |x|2)s|v|2dx

)1/2
. The existence of the scattering

solution of the Helmholtz equation can be proved by letting ε→ 0.



The limiting absorption principle

Let uε ∈ H1(Rd), ε > 0, be the solution of

∆uε + (1 + iε)k(x)2uε = f in Rd, uε = g on ΓD.

It can be proved

‖uε‖H1,−s(Rd\D̄) ≤ C(‖f‖H1(Rd)′ + ‖g‖H1/2(ΓD)), s > 1/2.

where for any s ∈ R, ‖v‖H1,s(D) =
(
‖v‖2

L2,s(D)
+ ‖∇v‖2

L2,s(D)

)1/2

and

‖v‖L2,s(D) =
(∫
D(1 + |x|2)s|v|2dx

)1/2
. The existence of the scattering

solution of the Helmholtz equation can be proved by letting ε→ 0.

Open questions: layered media, periodic media, ...
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The absorbing boundary condition

∆u+ k(x)2u = f(x) in R2\D̄,

u = g on ΓD,
√
r

(
∂u

∂r
− iku

)
→ 0 as r = |x| → ∞.

This problem is reduced to the problem in bounded domain by the DtN
mapping T : H1/2(Γl)→ H−1/2(Γl), Bl = {x ∈ R2 : |xj| ≤ lj, j = 1, 2},

−3 −2 −1 0 1 2 3
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∆u+ k(x)2u = f(x) in Bl\D̄,
u = g on ΓD,

∂u

∂ν
= Tu on Γl.
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[Engquist-Majda, 1977] introduced a systematic way to construct the
approximation of the DtN mapping. ABC is related to the wave-
extrapolation equation in seismic imaging to find the down-going waves.

[Claebout-Muir, 1973] inserts the plane wave e−iωt+ikxx+ikzz into the wave
equation to obtain the dispersion relation k2

x + k2
z = ω2/c2 = k2. By down-

going wave one sloves

ikz = ik

√
1−

k2
x

k2
≈ ik

(
1−

1

2

k2
x

k2

)
, for

kx

k
� 1.

Taking the inverse Fourier transform ikx↔ ∂
∂x

, ikz ↔ ∂
∂z

, one obtains

∂u

∂z
= iku+

i

2k

∂2u

∂x2
.

This is the so called 15◦ equation.
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The perfectly matched layer method

Helmholtz equation in the unbounded domain:

∆u+ k2u = f in R2 , |x|1/2
( ∂u
∂|x|

− iku
)
→ 0 as |x| → ∞,

where k is the wave number and f ∈ H−1(R2) has compact support.



The perfectly matched layer method

Helmholtz equation in the unbounded domain:

∆u+ k2u = f in R2 , |x|1/2
( ∂u
∂|x|

− iku
)
→ 0 as |x| → ∞,

where k is the wave number and f ∈ H−1(R2) has compact support.

The PML method for the surface wave

We consider the problem [Duran, Muga and Nedelec 2005]

∆u + k2u = 0 in Ω above the surface ΓD

−∂u

∂n
+ zu = f on ΓD, z > 0 impedance.

Zhiming Chen - International Conference on Sparse Representation of Multiscale Data and Images: Theory and Applications, Singapore, December 14-17, 2009

The fundamental solution

∆xG(x, y) + k2G(x, y) = −δy(x) in R2
+,

−∂u

∂n
+ zu = f on Σ = {x ∈ R2 : x2 = 0}.

Let y ∈ R2
+, that is, y2 > 0, and

Ĝ(ξ, x2) =
1√
2π

∫ ∞

−∞
Gy(x1, x2)e

−i(x1−y1)ξdx1.

the Fourier transform in first variable, then

∂2Ĝ

∂x2
2

+ (k2 − ξ2)Ĝ = − 1√
2π
δy2(x2),

∂Ĝ

∂x2
+ zĜ = 0 at x2 = 0.

Zhiming Chen - International Conference on Sparse Representation of Multiscale Data and Images: Theory and Applications, Singapore, December 14-17, 2009

Concluding remarks

We proposed a uniaxial PML method for solving the time-harmonic
scattering problems in layered media.

We show that the solution of the PML problem converges exponentially to
the solution of the original scattering problem in the computational domain
as either the PML absorbing coefficient or the thickness of the PML layer
tends to infinity. The analysis applies also to the problem with surface
waves.

THANK YOU!

k1 k2 Γ1 Γ2

Zhiming Chen - International Conference on Sparse Representation of Multiscale Data and Images, Singapore, December 14-17, 2009

Concluding remarks

We proposed a uniaxial PML method for solving the time-harmonic
scattering problems in layered media.

We show that the solution of the PML problem converges exponentially to
the solution of the original scattering problem in the computational domain
as either the PML absorbing coefficient or the thickness of the PML layer
tends to infinity. The analysis applies also to the problem with surface
waves.

THANK YOU!

k1 k2 Γ1 Γ2

Zhiming Chen - International Conference on Sparse Representation of Multiscale Data and Images, Singapore, December 14-17, 2009

Concluding remarks

We proposed a uniaxial PML method for solving the time-harmonic
scattering problems in layered media.

We show that the solution of the PML problem converges exponentially to
the solution of the original scattering problem in the computational domain
as either the PML absorbing coefficient or the thickness of the PML layer
tends to infinity. The analysis applies also to the problem with surface
waves.

THANK YOU!

k1 k2 Γ1 Γ2

Zhiming Chen - International Conference on Sparse Representation of Multiscale Data and Images, Singapore, December 14-17, 2009

Concluding remarks

We proposed a uniaxial PML method for solving the time-harmonic
scattering problems in layered media.

We show that the solution of the PML problem converges exponentially to
the solution of the original scattering problem in the computational domain
as either the PML absorbing coefficient or the thickness of the PML layer
tends to infinity. The analysis applies also to the problem with surface
waves.

THANK YOU!

k1 k2 Γ1 Γ2

Zhiming Chen - International Conference on Sparse Representation of Multiscale Data and Images, Singapore, December 14-17, 2009

• Perfectly Matched Layer (PML)
[Berenger,1994]

• Uniaxial PML [Sacks-Kingsland-
Lee-Lee, 1995]
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The complex coordinate stretching

Let Bl = {x ∈ R2 : |xj| ≤ lj, j = 1, 2}. Plane wave: u = eikxj, j = 1, 2,
[Chew-Weedon, 1994] defines

xj → x̃j =

∫ xj

0

αj(t)dt =

{
xj if xj ≤ lj;
xj + i

∫ xj
lj
σj(t)dt if xj ≥ lj,

where αj(t) = 1 + iσj(t), σj(t) = 0 for |t| ≤ lj,

σj(t) = σj(−t), and σj = γ0 > 0 for |t| ≥ l̄j.

Here l̄j > lj is fixed and γ0 > 0 is a constant. The stretched wave:

ũ = eikx̃j =

{
eikxj if xj ≤ lj;

eikxje
−k

∫ xj
lj
σj(t)dt

if xj ≥ lj.
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The fundamental solution in R2

∆G(x, y) + k2G(x, y) = −δy(x) in R2.

We know G(x, y) = i
4
H

(1)
0 (k|x− y|). Let

Ĝ(ξ, x2) =

∫ ∞

−∞
G(x1, x2)e

−i(x1−y1)ξdx1

be the Fourier transform in first variable.

∂2Ĝ

∂x2
2

+ (k2 − ξ2)Ĝ = −δy2(x2).
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Let µ = (k2 − ξ2)1/2, then Ĝ(ξ, x2) = i
2µ
eiµ|x2−y2|.



Let µ = (k2 − ξ2)1/2, then Ĝ(ξ, x2) = i
2µ
eiµ|x2−y2|.
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Let µ = (k2 − ξ2)1/2, then Ĝ(ξ, x2) = i
2µ
eiµ|x2−y2|.

Im(!) 

Re(!) −k1 

k1 

−k2 

k2 

SIP 

SIP 

The Sommerfeld Integral Path (SIP)

The Green function G(x, y) is

G(x, y) =
i

4π

∫

SIP

1

µ
eiξ(x1−y1)+iµ(x2+y2)dξ,
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Cagniard-de Hoop transform

Lemma (Schläfli integral representation) We have

G(x, y) =
1

2π

∫ ∞

1

1
√
t2 − 1

eik|x−y|tdt.
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The convergence of the PML method

u(x) = −
∫

R2
f(y)G(x, y)dy in R2.

For any z ∈ C, denote by z1/2 the analytic branch of
√
z such that

Re (z1/2) > 0 for any z ∈ C\[0,+∞). We define the complexified distance

ρ(x̃, ỹ) =
[
(x̃(x1)− ỹ(y1))

2 + (x̃(x2)− ỹ(y2))
2
]1/2

,

and the complex coordinate stretched fundamental solution

G(x̃, ỹ) =
1

2π

∫ ∞

1

1
√
t2 − 1

eikρ(x̃,ỹ)tdt.
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The complexified distance satisfies, where σ0 = maxx∈R |σ(t)|.

(1 + max(1, σ0)
2)−1/2|x− y| ≤ |ρ(x̃, ỹ)| ≤ (1 + σ2

0)1/2|x− y|, ∀x, y ∈ R2.

The imaginary part of the complexified distance satisfies

Im ρ(x̃, ỹ) ≥
1

|x− y|

(
|x1 − y1|

∣∣∣∣
∫ x1

y1

σ1(t)dt

∣∣∣∣+ |x2 − y2|
∣∣∣∣
∫ x2

y2

σ2(t)dt

∣∣∣∣
)
.

There exists a constant C > 0 independent of k and the medium property
σ such that for any x, y ∈ R2, x 6= y,

|G(x̃, ỹ)| ≤ C(1 + σ2
0)1/4e−

1
2kIm ρ(x̃,ỹ)(k|x− y|)−1/2.

Thus it decays exponentially as |x| → ∞ for any fixed y ∈ R2.
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ũ(x) = −
∫

R2
f(y)G(x̃, ỹ)dy, ∀x ∈ R2.

Since f is supported inside Bl, ũ = u in Bl, ũ decays exponentially as
|x| → ∞. ũ satisfies ∆̃ũ+ k2ũ = f in R2 and by the chain rule

J−1∇ · (A∇ũ) + k2ũ = f in R2,

where A(x) = diag
(
α2(x2)
α1(x1)

, α1(x1)
α2(x2)

)
and J(x) = α1(x1)α2(x2).



ũ(x) = −
∫

R2
f(y)G(x̃, ỹ)dy, ∀x ∈ R2.

Since f is supported inside Bl, ũ = u in Bl, ũ decays exponentially as
|x| → ∞. ũ satisfies ∆̃ũ+ k2ũ = f in R2 and by the chain rule

J−1∇ · (A∇ũ) + k2ũ = f in R2,

where A(x) = diag
(
α2(x2)
α1(x1)

, α1(x1)
α2(x2)

)
and J(x) = α1(x1)α2(x2).

Let BL = {x ∈ R2 : |xj| ≤ lj + dj, j = 1, 2}. The PML problem is to find
û ∈ H1

0(BL) such that

(A∇û,∇ψ)− k2(Jû, ψ) = −(Jf, ψ), ∀ψ ∈ H1
0(BL).
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Theorem [C.-Xiang, 2013] For sufficiently large σ0d2 ≥ 1, the sesquilinear
form associated with the PML problem satisfies the inf-sup condition

sup
ψ∈H1

0(BL)

|(A∇φ,∇ψ)− k2(Jφ, ψ)|
‖ψ‖H1(BL)

≥ µL‖φ‖H1(BL) ∀φ ∈ H1
0(BL),

where the constant µ−1
L ≤ Ck3/2. Moreover, we have

‖ũ− û‖H1(BL) ≤ Ck2(1 + kL)2e−
1
2kγσ̄‖f‖H1(Bl)

′,

where L is the diameter of BL and γ = d2√
d2

2+(2l2+d1+d2)2
.

The stability is proved by the Bramble-Pasicak reflection argument [Bramble-
Pasciak, 2012].
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The fundamental solution of the PML equation

The fundamental solution of the PML equation is G̃(x, y) = J(y)G(x̃, ỹ)
[Lassas-Sommersalo, 2001], [Kim-Pasciak, 2010]:

J−1∇ · (A∇G̃(x, y)) + k2G̃(x, y) = −δy(x) in R2.

Notice that G̃(x, y) 6= G̃(y, x). G̃(y, x) is the fundamental solution of the
adjoint equation:

∇ · (A∇(J−1G̃(y, x))) + k2G̃(y, x) = −δy(x) in R2.

We recall that ∇ ·A∇J−1 is the adjoint operator of J−1∇ ·A∇.
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Bibliographic remarks (Convergence of PML method)

• Convergence for circular or smooth PML layers

– [Lassas-Somersalo, 1998, 2001]: Helmholtz
– [Hohage-Schmidt-Zschiedrich, 2003]: Helmholtz
– [C.-Liu, 2005]: 2D Helmholtz
– [Bao-Wu, 2005]: Maxwell
– [Chen-C, 2006] Maxwell
– [Bramble-Pasciak, 2007, 2010]: Maxwell, elastic
– [C.-Zheng, 2017] 3D Maxwell (two-layered)

• Convergence of Cartesian PML method

– [C.-Wu, 2003]: grating problem
– [C.-Zheng, 2010]: 2D Helmholtz (two-layered)
– [Kim-Pasciak, 2010]: 2D Helmholtz
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– [Bramble-Pasciak, 2012, 2013]: Helmholtz and Maxwell
– [C.-Cui-Zhang, 2013]: Maxwell (anisotropic PML)
– [C.-Xiang-Zhang, 2016]: elastic



– [Bramble-Pasciak, 2012, 2013]: Helmholtz and Maxwell
– [C.-Cui-Zhang, 2013]: Maxwell (anisotropic PML)
– [C.-Xiang-Zhang, 2016]: elastic

Open questions: layered media, time-domain PML, ...
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The discrete Helmholtz equation

The difficulties of solving large wave number discrete Helmholtz equations:

1. Huge number of degrees of freedom required;
2. Highly indefinite nature of the discrete problem.
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The difficulties of solving large wave number discrete Helmholtz equations:

1. Huge number of degrees of freedom required;
2. Highly indefinite nature of the discrete problem.

Literature remarks:

1. Domain decomposition [Despres, 1991], [Dhaidurov-Ogorodnikov, 1991];
[Gander-Magoules-Nataf, 2002];
2. Multigrid [Brandt-Livshit, 1997], [Elman-Ernst-O’Leary, 2001];
3. Shifted Laplacian [Erlangga, 2008], [Gander-Graham-Spence, 2015];
4. Sweeping preconditioner with moving PML [Engquist-Ying, 2011]
5. Review [Gander-Zhang, 2018]



The discrete Helmholtz equation

The difficulties of solving large wave number discrete Helmholtz equations:

1. Huge number of degrees of freedom required;
2. Highly indefinite nature of the discrete problem.

Literature remarks:

1. Domain decomposition [Despres, 1991], [Dhaidurov-Ogorodnikov, 1991];
[Gander-Magoules-Nataf, 2002];
2. Multigrid [Brandt-Livshit, 1997], [Elman-Ernst-O’Leary, 2001];
3. Shifted Laplacian [Erlangga, 2008], [Gander-Graham-Spence, 2015];
4. Sweeping preconditioner with moving PML [Engquist-Ying, 2011]
5. Review [Gander-Zhang, 2018]

Our purpose: to propose a domain decomposition method:
Total costs ∝ # layers × the costs in each layer.

Zhiming Chen - AMSS, CAS, Beijing (China), 5 September 2018



The STDDM: heuristic idea
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Ω0 = {x ∈ R2 : x2 < ζ1}
Ωi = {x ∈ R2 : ζi < x2 < ζi+1}, 1 ≤ i ≤ N ,
ΩN+1 = {x ∈ R2 : x2 > ζN+1}.
supp(f) ⊂ ∪Ni=1Ωi.
fi = f |Ωi in Ωi and 0 outside Ωi.

ũ(x) = −
∫

R2
f(y)G̃(x, y)dy

= −
N∑

i=1

∫

Ωi

fi(y)G̃(x, y)dy,

where G̃(x, y) is the fundamental solution
of the PML equation.
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ũ(x) = −
∫

R2
f(y)G̃(x, y)dy = −

N∑

i=1

∫

Ωi

fi(y)G̃(x, y)dy,

Let f̄1 = f1. We transfer the source from Ωi to Ωi+1 in the sense that

∫

Ωi

f̄i(y)G̃(x, y)dy =

∫

Ωi+1

[Ψi+1(f̄i)](y)G̃(x, y)dy, ∀x ∈ Ωj, j > i+ 1,

then for f̄i+1 = fi+1 + Ψi+1(f̄i), we have

ũ(x) = −
∫

ΩN

fN(y)G̃(x, y)dy −
∫

ΩN−1

f̄N−1(y)G̃(x, y)dy, ∀x ∈ ΩN .

The solution ũ in ΩN can be solved outside only two layers ΩN and ΩN−1.
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f(y)G̃(x, y)dy = −

N∑

i=1

∫

Ωi

fi(y)G̃(x, y)dy,

Let f̄1 = f1. We transfer the source from Ωi to Ωi+1 in the sense that

∫

Ωi

f̄i(y)G̃(x, y)dy =

∫

Ωi+1

[Ψi+1(f̄i)](y)G̃(x, y)dy, ∀x ∈ Ωj, j > i+ 1,

then for f̄i+1 = fi+1 + Ψi+1(f̄i), we have

ũ(x) = −
∫

ΩN

fN(y)G̃(x, y)dy −
∫

ΩN−1

f̄N−1(y)G̃(x, y)dy, ∀x ∈ ΩN .

The solution ũ in ΩN can be solved outside only two layers ΩN and ΩN−1.
The solution in the other layers can be computed successively by solving
the half-space Helmholtz problem using the transferred sources.
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The STDDM for PML equation in R2

Algorithm 1. (Source transfer for PML problem in R2)
1◦ Let f̄1 = f1 in R2;
2◦ For i = 1, 2, · · · , N − 2, do
• Find ui ∈ H1(R2) such that

J−1∇ · (A∇ui) + k2ui = −f̄i in R2.

• Compute Ψi+1(f̄i) = J−1∇ · (A∇(βi+1ui)) + k2(βi+1ui) in Ωi+1.
• Set f̄i+1 = fi+1 + Ψi+1(f̄i) in Ωi+1 and f̄i+1 = 0 elsewhere.

Here βi+1 = βi+1(x2) is a smooth function defined in Ωi+1,

βi+1 = 1, β′i+1 = 0 on Γi+1, βi+1 = β′i+1 = 0 on Γi+2,

Γi = {x ∈ R2 : x2 = ζi}.
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Theorem [C.-Xiang, 2013] For i = 1, · · · , N − 2, we have, for any
x ∈ Ω(ζN ,+∞),

∫

Ωi

f̄i(y)G̃(x, y)dy =

∫

Ωi+1

[Ψi+1(f̄i)](y)G̃(x, y)dy.

Remark: Other ways to transfer the source: [Stolk, 2013], [Zepeda-Nunez
and Demanet, 2015]
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Algorithm 2. (Wave expansion for PML problem in R2)
1◦ Solve vN ∈ H1(R2) such that

J−1∇ · (A∇vN) + k2vN = fN + f̄N−1 in R2.

2◦ For i = N − 1, · · · , 2, find vi ∈ H1(Ω(−∞, ζi+1)) such that

J−1∇ · (A∇vi) + k2vi = fi + f̄i−1 in Ω(−∞, ζi+1),

vi = vi+1 on Γi+1.



Algorithm 2. (Wave expansion for PML problem in R2)
1◦ Solve vN ∈ H1(R2) such that

J−1∇ · (A∇vN) + k2vN = fN + f̄N−1 in R2.

2◦ For i = N − 1, · · · , 2, find vi ∈ H1(Ω(−∞, ζi+1)) such that

J−1∇ · (A∇vi) + k2vi = fi + f̄i−1 in Ω(−∞, ζi+1),

vi = vi+1 on Γi+1.

Theorem [C.-Xiang, 2013] We have ũ = vN in Ω(ζN ,+∞), ũ = vi in Ωi
for all i = N − 1, · · · , 3, and ũ = v2 in Ω(−∞, ζ3).
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The source transfer algorithm in truncated domain

Algorithm 3. (Source transfer for truncated PML problem)
1◦ Let f̂1 = f1 in Ω1;
2◦ For i = 1, · · · , N − 2, do
• Find ûi ∈ H1

0(ΩPML
i ), ΩPML

i = (−l1 − d1, l1 + d1)× (ζi − d2, ζi+2 + d2),
such that

(Ai∇ûi,∇ψ)− k2(Jiûi, ψ) = (Jif̂i, ψ), ∀ψ ∈ H1
0(ΩPML

i ).

• Compute Ψ̂i+1(f̂i) ∈ H−1(ΩPML
i ) such that

〈JiΨ̂i+1(f̂i), ψ〉 = −(Ai∇(βi+1ûi),∇ψ) + k2(Jiβi+1ûi, ψ),∀ψ ∈ H1
0(ΩPML

i ).

• Set f̂i+1 = fi+1 + Ψ̂i+1(f̂i) in Ωi+1 ∩BL and f̂i+1 = 0 elsewhere.
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The wave expansion algorithm in truncated domain

Algorithm 4. (Wave expansion for truncated PML problem)
1◦ Solve v̂N such that

J−1
N−1∇ · (AN−1∇v̂N) + k2v̂N = fN + f̂N−1 in ΩPML

N−1,

v̂N = 0 on ∂ΩPML
N−1.

2◦ For i = N − 1, · · · , 2, find v̂i such that

J−1
i−1∇ · (Ai−1∇v̂i) + k2v̂i = fi + f̂i−1 in DPML

i ,

v̂i = v̂i+1 on ∂DPML
i ∩ Γi+1,

v̂i = 0 on ∂DPML
i \Γi+1,

where DPML
i = (−l1 − d1, l1 + d1)× (ζi−1 − d2, ζi+1).
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Theorem [C.-Xiang, 2013] Let v̂ = v̂N in Ω(ζN ,+∞) ∩BL, v̂ = v̂i in
Ωi ∩BL for all i = 3, · · · , N − 1, and v̂ = v̂2 in Ω(−∞, ζ2) ∩BL. Then
for sufficiently large σ0d2 ≥ 1, we have

‖û− v̂‖H1(BL) ≤ Ck3N−7
2(1 + kL)2e−

1
2kγσ̄‖f‖H1(Bl)

′.

Let T be the solution operator of the PML problem defined by T (f) = û
and T̂ be the output operator of the the STDDM defined by T̂ (f) = v̂.
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Ωi ∩BL for all i = 3, · · · , N − 1, and v̂ = v̂2 in Ω(−∞, ζ2) ∩BL. Then
for sufficiently large σ0d2 ≥ 1, we have

‖û− v̂‖H1(BL) ≤ Ck3N−7
2(1 + kL)2e−

1
2kγσ̄‖f‖H1(Bl)

′.

Let T be the solution operator of the PML problem defined by T (f) = û
and T̂ be the output operator of the the STDDM defined by T̂ (f) = v̂.

T̂ is a good approximation of T if the PML parameters are chosen such
that k3N−7

2(1 + kL)2e−
1
2kγσ̄ is sufficiently small (e.g. 0.01 in our numerical

examples).

The discretization of T̂ will be a good preconditioner of the corresponding
discretization of T if the well-known pollution error of the discretization of
the Helmholtz equation is controlled. Better discretization leads to better
preconditioner.
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Numerical example : Helmholtz problem: Marmousi model

k(x) = ω/c(x), where ω/2π = 50Hz and c(x) is Marmousi model in
B1 = (−4100m, 4100m)× (−1500m, 1500m). Wavelength ranges in
30m− 110m. There are 117× 43 wavelengths in average. Let N = 30.

The mesh 12.5m× 4m. Set f(x) = e−(h2
0/16)−2((x1−r1)2+(x2−r2)2).
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Set f(x) = e−(h2
0/16)−2((x1−r1)2+(x2−r2)2). Spectral element of order p.

p DOF Number of iterations
3 5,534,305 76
5 15,367,841 65

The real part of the solution when ω/2π = 50 and p = 3.
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2. The scattering problems: Perfectly matched layer and source transfer
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The setting

The forward problem:

(
1

c(x)2

∂2

∂t2
−∆

)
p = δxs(x)f(t) in R3

+.

The data: Q(xs, xr; t) = p(xs, xr; t), xs, xr ∈ Γ0 = {x ∈ R3 : x3 = 0}.
The problem: From the data Q(xs, xr, t) and a background velocity c0(x)
to reconstruct the reflectivity R(x).
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The data fitting model

Let K be some closed convex set of L2(R3
+), e.g.,

K = {c ∈ L2(R3
+) : 0 ≤ c1 ≤ c(x) ≤ c2 a.e. in R3

+}.

Define the misfit functional

J(c) =
1

2

N∑

j=1

‖p[c, xsj](·)−Q(xsj, ·, t)‖
2
L2(Γ0×(0,T )).

The data fitting model:

min
c∈K

J(c).

Difficulties: nonlinear, non-convex, non-smooth, ill-posed, etc.
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Reverse time migration method

The forward problem:

(
1

c2

∂2

∂t2
−∆

)
pF = δxs(x)f(t),

∂νpF = 0 on Γ0,

pF |t=0 = 0, ∂tpF |t=0 = 0.

The back-propagation:

(
1

c2

∂2

∂t2
−∆

)
pB = 0,

pB = Q(xs, x, t) on Γ0,

pB|t=T = 0, ∂tpB|t=T = 0.

Imaging condition: [Baysal-Kosloff-Sherwood, 1983], [MaMechan, 1983],
[Whitmore, 1983]

R(x) =

∫ T

0

∫

Γ0×Γ0

pF (xs, x, t)pB(xs, xr, x, t)ds(xs)ds(xr)dt.

Prestack depth migration: [Claerbout, 1970].
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From Yu Zhang’s LSEC summer school 2011.



From Yu Zhang’s LSEC summer school 2011.

Our question: What is the image? Why RTM works?
Previous work: high frequency assumption
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The acoustic scattering problem

Dirac sources xs ∈ Γs.
Measurement: the scattered waves us = u− ui, ui = i

4
H

(1)
0 (k|x− xs|).

The scattering problem of penetrable obstacles:

∆u+ k2n(x)u = −δxs(x) in R2,
√
r
(
∂u
∂r
− iku

)
→ 0 as r →∞, r = |x|.

The scattering problem of non-penetrable obstacles:

∆u+ k2u = −δxs(x) in R2\D̄,
u = 0 or ∂u

∂ν
+ ikη(x)u = 0 on ΓD,

√
r
(
∂u
∂r
− iku

)
→ 0 as r →∞, r = |x|.
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Literature remarks

• Multiple Signal Classification (MUSIC): point source or small inclusions
[Schmidt, 1986], [Devaney, 2001], [Bruhl, Hanke and Vogelius, 2003],
[Ammari and Kang, 2004].

• Linear Sampling [Colton and Kirsch, 1996], Factorization [Kirsch, 1998],
Probe method [Ikehata,1998], and Point Source [Potthast, 1996].

• Reverse time migration (RTM): prestack depth migration [Claerbout,
1970].
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Literature remarks

• Multiple Signal Classification (MUSIC): point source or small inclusions
[Schmidt, 1986], [Devaney, 2001], [Bruhl, Hanke and Vogelius, 2003],
[Ammari and Kang, 2004].

• Linear Sampling [Colton and Kirsch, 1996], Factorization [Kirsch, 1998],
Probe method [Ikehata,1998], and Point Source [Potthast, 1996].

• Reverse time migration (RTM): prestack depth migration [Claerbout,
1970]. The analysis is based on small inclusion [Garnier, 2007], [Ammari,
et al, 2013] or high frequency [Belykin, 1982], [Bleistein, Cohen, and
Stockwell, 2001] assumptions.

Our purpose: New mathematical understanding of RTM without the
geometric optics approximation assumption for extended obstacles.
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Helmholtz-Kirchhoff identity

Lemma [Bojarski, 1973] Let D be a bounded domain, for any x, y ∈ D,

∫

∂D

(
Φ(x, ξ)

∂Φ(ξ, y)

∂ν
−
∂Φ(x, ξ)

∂ν
Φ(ξ, y)

)
ds(ξ) = 2i ImΦ(x, y),

where Φ(x, y) = i
4
H

(1)
0 (k|x− y|). For x ∈ Ω, ξ ∈ ∂D, Φ(x, ξ) = O(R−1/2),

∂Φ(x,ξ)
∂ν

− ikΦ(x, ξ) = O(R−3/2), where R = dist(Ω, ∂D).

This implies, for x, y ∈ Ω,

k

∫

∂D
Φ(x, ξ)Φ(ξ, y)ds(ξ)

= Im Φ(x, y) + O(R−1).
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The RTM algorithm

Given us(xr, xs), where xr ∈ Γr = ∂Br, xs ∈ Γs = ∂Bs.
1◦ Back-propagation: Compute the solution vb:

∆vb(x, xs) + k2vb(x, xs) =

∫

Γr

us(xr, xs)δxr(x)ds(xr) in R2,

√
r

(
∂vb

∂r
− ikvb

)
→ 0 as r →∞.
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The RTM algorithm

Given us(xr, xs), where xr ∈ Γr = ∂Br, xs ∈ Γs = ∂Bs.
1◦ Back-propagation: Compute the solution vb:

∆vb(x, xs) + k2vb(x, xs) =

∫

Γr

us(xr, xs)δxr(x)ds(xr) in R2,

√
r

(
∂vb

∂r
− ikvb

)
→ 0 as r →∞.

2◦ Cross-correlation: For z ∈ Ω, the search domain, compute

I(z) = k2 · Im
∫

Γs

ui(z, xs)vb(z, xs)ds(xs).

= −k2 · Im
∫

Γs

∫

Γr

Φ(z, xs)Φ(z, xr)us(xr, xs)ds(xs)ds(xr).
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The resolution analysis: sound soft obstacle

Theorem [Chen-C.-Huang, 2013] For any z ∈ Ω, let ψ(x, z) be the radiation
solution of

∆ψ(x, z) + k2ψ(x, z) = 0 in R2\D̄, ψ(x, z) = −Im Φ(x, z) on ΓD.

Then we have

I(z) = k

∫

S1
|ψ∞(x̂, z)|2dx̂+ wÎ(z)

where ‖wÎ‖L∞(Ω) ≤ C(R−1
s +R−1

r ).

ψ(x, z) is the radiation solution of the Helmholtz equation with the incident
wave Im Φ(x, z).



The resolution analysis: sound soft obstacle

Theorem [Chen-C.-Huang, 2013] For any z ∈ Ω, let ψ(x, z) be the radiation
solution of

∆ψ(x, z) + k2ψ(x, z) = 0 in R2\D̄, ψ(x, z) = −Im Φ(x, z) on ΓD.

Then we have

I(z) = k

∫

S1
|ψ∞(x̂, z)|2dx̂+ wÎ(z)

where ‖wÎ‖L∞(Ω) ≤ C(R−1
s +R−1

r ).

ψ(x, z) is the radiation solution of the Helmholtz equation with the incident
wave Im Φ(x, z). Therefore we expect that the imaging functional will peak
at the boundary of the scatterer D and decay away from the scatterer.
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Numerical examples

The synthesized scattering data is computed by standard Nyström’s
methods.

The boundary integral equations on ΓD are solved on a uniform mesh of
the boundary with ten points per probe wavelength.

The boundaries of the obstacles used in our numerical experiments are
parameterized as follows:

Circle: x1 = ρ cos(θ), x2 = ρ sin(θ), θ ∈ (0, 2π],

Kite: x1 = cos(θ) + 0.65 cos(2θ)− 0.65, x2 = 1.5 sin(θ), θ ∈ (0, 2π],

p-leaf: r(θ) = 1 + 0.2 cos(pθ), θ ∈ (0, 2π].
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The resolution of two obstacles

The model is a circle of radius ρ = 3 and a kite. The distance between two
objects is about 0.5. The search domain is Ω = (−8, 8)× (−8, 8) with a
sampling 201× 201 mesh.
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The first picture is the exact obstacles. The other three pictures from left
to right are imaging results using probe wavelengths λ = 1, 0.5, 0.25 and
Ns = Nr = 64, 128, 256.
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Stability of RTM with respect to the additive Gaussian
random noise

Let unoise = us + νnoise, where νnoise ∼ N (0, µmax |us|) is the Gaussian
noise.

The imaging results using data added with additive Gaussian noise
and µ = 10%, 20%, 40%, 60% from left to right, respectively. The
probe wavelength λ = 1 and Ns = Nr = 128. The search domain is
Ω = (−10, 10)× (−10, 10) with a sampling 201× 201 mesh.
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The imaging results using multi-frequency data added with additive
Gaussian noise and µ = 10%, 20%, 40%, 60% from left to right,
respectively. The probe wavelengths λ = 1/0.8, 1/0.9, 1/1.0, 1/1.1, 1/1.2
and Ns = Nr = 128.
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Phaseless imaging

Let ui(x, xs) = Φ(x, xs), where Φ(x, xs) = i
4
H

(1)
0 (k|x− xs|) and the

source xs ∈ Γs, be the incident wave. Let the total field is u = ui + us

with us(x, xs) satisfying

∆us + k2us = 0 in R2\D̄,
us = −ui on ΓD,

√
r
(∂us
∂r
− ikus

)
→ 0 as r = |x| → +∞,

The problem: Find the support of the scatterer using only the information
|u(xr, xs)|.
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Literature remarks

• Uniqueness [Klibanov, 2014], [Novikov, 2015, 2016] (Schrödingier)

• Iterative method: [Litman-Belkebir, 2006], [D’Urso et al, 2008],
[Li-Zheng-Li, 2009] Continuation: [Bao-Li-Lv, 2013], Linearization:
[Ammari-Chow-Zou, 2016] , [Klibanov-Nguyen-Pan, 2015], [Klibanov-
Romanov, 2015]; Modulus of Far field pattern [Kress-Rundell, 1997],
[Ivanyshyn-Kress, 2001, 2010]

• Phase retrieval and imaging [Franceschini et al, 2006], [Bardsley-
Vasquez, 2016], [Chai-Moscoso-Papanicolaou, 2010], [Novikov-Moscoso-
Papanicolaou, 2015].

• Direct method: [Devaney, PRL 1989] (Born approximation)
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Phaseless imaging

The RTM imaging function:

IRTM(z) = −k2Im

∫

Γs

∫

Γr

Φ(z, xs)Φ(xr, z)us(xr, xs)ds(xr)ds(xs).

Phaseless imaging function based on RTM:

Iphaseless
RTM (z) = −k2Im

∫

Γs

∫

Γr

Φ(z, xs)Φ(xr, z)∆(xr, xs)ds(xr)ds(xs),

where

∆(xr, xs) =
|u(xr, xs)|2 − |ui(xr, xs)|2

ui(xr, xs)
.
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Phaseless imaging

Theorem [C.-Huang, 2017] We have

Iphaseless
RTM (z) = IRTM(z) +Rphaseless

RTM (z), ∀z ∈ Ω,

where |Rphaseless
RTM (z)| ≤ C(1 + ‖T‖)2(kRs)

−1/2. Here T is the DtN mapping
and the constant C may depend on kdD, k|z| but is independent of
k, dD, Rr, Rs.

Therefore the imaging resolution of our new phaseless RTM algorithm is
essentially the same as the imaging results using the scattering data with
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Phaseless imaging

Theorem [C.-Huang, 2017] We have

Iphaseless
RTM (z) = IRTM(z) +Rphaseless

RTM (z), ∀z ∈ Ω,

where |Rphaseless
RTM (z)| ≤ C(1 + ‖T‖)2(kRs)

−1/2. Here T is the DtN mapping
and the constant C may depend on kdD, k|z| but is independent of
k, dD, Rr, Rs.

Therefore the imaging resolution of our new phaseless RTM algorithm is
essentially the same as the imaging results using the scattering data with
the full phase information when the sources and measurements are placed
far away from the scatterer. The theorem extends to penetrable or other
non-penetrable obstacles.
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Numerical example

The imaging of a 5-leaf obstacle with impedance condition η = 5, a partially
coated obstacle with η = 5 in the upper boundary and η = 1 in the lower
boundary, a sound hard, and a penetrable obstacle with n(x) = 0.25.

The sampling domain is Ω = (−3, 3)× (−3, 3) with the sampling grid
201× 201. The probe wave wavenumber k = 4π,Ns = Nr = 128, and
Rs = Rr = 10.
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Literature Remarks

1. Full space imaging: acoustic [Chen-C.-Huang, 2013], electromagnetic
[Chen-C.-Huang, 2013], elastic [C.-Huang, 2015]; closed waveguides:
[C.-Huang, 2015]; half-space: [C.-Huang, 2015];

2. Phaseless: acoustic [C.-Huang, 2016], electromagnetic [C.-Huang, 2016],
half-space acosutic colorblue[C.-Fang-Huang, 2017]
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Input → Program → Output  The solution of real world problem

• Input (Model): Physical laws, constitutive relation, material parameters,
computation domain, boundary conditions, ... Validation

• Input (Numerics): Mesh, discretization schemes, algebraic solvers,
stopping criterion, regularization parameters, ... Verification

Fast program : model reduction, optimal computational complexity,

software engineering (parallel computing), hardware performance, ...

Predictive modeling requires the error control of numerical methods!

THANK YOU!
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