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triangle

For a triangle:
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A B

C

The sum of the exterior angles of a triangle equals 2π

The sum of the interior angles of a triangle equals π

χ(∆) := The number of surfaces - the number of edges + the
number of vertexes equal 1

2πχ(∆) = the sum of the exterior angles

Xingwang Xu Geometry, Analysis and Topology
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For a polygon:
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CD

The sum of the exterior angles of a polygon equals 2π

The sum of the interior angles of a polygon equals (n − 2)π
where n is the number of the edges

χ(polygon) = the number of vertexes - the number of edges
+ the number of faces = 1

Add more edges, i.e., to do triangulation (easy to see: χ does
not change.)

2πχ(polygon) = the sum of the exterior angles
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For a disc: p
&%
'$

-

The total sum of the infinitesimal exterior angles equals 2π

No definition of the interior angles

χ(disc) = the number of vertexes - the number of edges +
the number of faces = 1 (by triangulation)

2πχ(Disc) = the sum of the infinitesimal exterior angles
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domain with a hole

For annulus domain: m&%
'$

6-

Total sum of the exterior angle equals 0

χ(Annulus) = 0

Still have 2πχ = the total sum of the exterior angle
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Theorem: Let Ω be a planar domain with smooth boundary ∂Ω.
Let k be the geodesic curvature and ds be the arc length element.
Then we have

χ(Ω) =
1

2π

∫
∂Ω

kds.

Remark: χ(Ω) is counted according to the triangulation as before.
In the case of triangle, we notice that the boundary curve is not
smooth and k = 0 on edge, that is why we count the exterior
angles.

Xingwang Xu Geometry, Analysis and Topology
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Gauss curvature

Johann Carl Friedrich Gauss
German Mathematician(1777-1855)

Σ: a smooth surface in R3 with orientation.

A unit out-normal vector η(p) ∈ S2 defined on Σ.

A map η : Σ −→ S2.

η∗(ds2
0 ) and ds2 on Σ.

Gaussian curvature at p: (η∗(ds2
0 ))/ds2.

This was done by Gauss in 1827. Gauss shows that this is intrinsic,
determined solely its line element(ds2).

Xingwang Xu Geometry, Analysis and Topology
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Euler number

Leonhard Euler
Swiss Mathematician(1707-1783)

Triangulate the surface and let v , e and f be the vertexes, the
edges and the surfaces. Then

χ(M) = v − e + f .

It was Euler who realized that this algebraic sum is very important
number of the surface, although before him, there were several
people noticed this number. This is called Euler number.

Xingwang Xu Geometry, Analysis and Topology
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Gauss-Bonnet formula

Pierre Ossian Bonnet
French Mathematician(1819-1892)

Theorem: If M is a compact surface without boundary and g is
the metric on M and K is Gaussian curvature of g , then
χ(M) = 1

2π

∫
M Kdσ where dσ is area element of g .

Xingwang Xu Geometry, Analysis and Topology
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According to S. S. Chern, C. F. Gauss and P. O. Bonnet both did
not really write down above formula.

What Gauss proved (1825) is
the following statement: For a geodesic triangle on M, if α, β and
γ are three inner angle and A its area, then

α + β + γ − π = KA.

Clearly here K is assumed to be constant on whole triangle.
Bonnet (1848) generalized this result to the case that the triangle
may not be geodesic triangle. In this case, the geodesic curvature
on boundary should appear in such formula.

Xingwang Xu Geometry, Analysis and Topology
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general formula

More general formula: If Ω is a smooth domain with piecewise
smooth boundary curve ∂Ω. Relative to the metric on Ω, we can
define the geodesic curvature of ∂Ω, denote it by k . Let αi be the
exterior angle at the non-smooth point pi .

Theorem:

2πχ(Ω) =
∑
i

αi +

∫
∂ω

kds +

∫
Ω
Kda.

This general formula covers the triangle and polygon cases. The
importance here is to connect the local information with global
information.

Xingwang Xu Geometry, Analysis and Topology
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local theory

Georg Friedrich Bernhard Riemann
German Mathematician(1826-1866)

Riemann surface theory appeared in his doctor thesis in 1851.
He was a student of Gauss.

Gauss recommended Riemann to be appointed a post in
Göttingen. In his Habilitation, he chose three topics (two
topics on electricity and a geometric topic). Gauss picked the
last one which was against Riemann’s expectation.

Riemann’s lecture ”On the hypotheses that lie at the
foundations of geometry”, delivered on 10 June 1854, became
a classic of mathematics, now called Riemannian Geometry.

Xingwang Xu Geometry, Analysis and Topology
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topics on electricity and a geometric topic). Gauss picked the
last one which was against Riemann’s expectation.

Riemann’s lecture ”On the hypotheses that lie at the
foundations of geometry”, delivered on 10 June 1854, became
a classic of mathematics, now called Riemannian Geometry.
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Local geometry
Global Geometry

local theory

In the first part of Riemann’s lecture, he posed the problem of
how to define an n-dimensional space and ended up giving a
definition of what today we call a Riemannian space. The
main work is to describe geodesic and hence the curvature
tensors.

The second part of Riemann’s lecture posed deep questions
about the relationship of geometry to the world we live in. He
asked what the dimension of real space was and what
geometry described real space.
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Local geometry
Global Geometry

local theory

Albert Einstein
German Scientist(1879-1955)

Riemann’s idea had not been completely understood for at least
SIXTY years until Einstein toke it up and use it in his general
relativity. Before that they was one piece work done by Elwin
Bruno Christoffel (1829-1900) and Gregorio Ricci-Curbastro
(1853-1925), now called Levi-Civita(Ricci’s student, full name
Tullio Levi-Civita, 1873-1941) connection which is first order
derivative of metric tensor while Riemann’s curvature tensor is
second order derivative of the metric tensor.
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Local geometry
Global Geometry

global theory

Heinz Hopf
German Mathematician(1894-1971)

Hopf had done at least two pieces of work during year 1925 when
he was visiting Göttingen.

For any closed manifold the sum of the indices of a generic
vector field is a topological invariant, namely, the Euler
characteristic. This is first proved by Solonmon Lefschetz
(Russian mathematician, 1884-1972).

Generalized Gauss-Bonnet formula to compact hyper-surfaces
in Euclidean space.
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Local geometry
Global Geometry

global theory

Andre Weil
French Mathematician(1906-1998)

Weil and his coauthor C. B. Allendoerfer(1911-1974, American
Mathematician) jointly proved Gauss-Bonnet formula for Riemann
polyhedra in 1943. Their method depends on the extrinsic
geometry. Namely, they embedded such manifold into higher
co-dimensional Euclidean space and use the geometry of Euclidean
space to get the proof. Still unsatisfied since this is a intrinsic
formula. It should have a pure intrinsic proof!
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Local geometry
Global Geometry

global theory

Elié Cartan
French Mathematician(1869-1951)

C. B. Allendoerfer had proved Gauss-Bonnet theorem for
Closed oriented Riemann manifolds in Euclidean space (1940)
(extrinsic proof)

W. Fenchel(German Mathematician, 1905-1988) had another
proof(1940) (also extrinsic proof)

E. Cartan developed exterior differential forms and moving
frame method to study differential geometry.
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Elié Cartan
French Mathematician(1869-1951)

C. B. Allendoerfer had proved Gauss-Bonnet theorem for
Closed oriented Riemann manifolds in Euclidean space (1940)
(extrinsic proof)

W. Fenchel(German Mathematician, 1905-1988) had another
proof(1940) (also extrinsic proof)

E. Cartan developed exterior differential forms and moving
frame method to study differential geometry.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

Local geometry
Global Geometry

global theory
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Local geometry
Global Geometry

global theory

Shiing-shen Chern
Chinese Mathematician(1911-2004)

Chern was visited E. Cartan and learnt his moving frame method.
At the time, he might be the only mathematician who can
understand Cartan’s method. Chern used this method to give a
beautiful intrinsic proof for Gauss-Bonnet theorem in 1944. A year
later, he generalized the formula to compact manifolds with
boundary. This is what now we call Chern-Gauss-Bonnet formula.
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Local geometry
Global Geometry

Chern’s work

S. S. Chern’s statement is: the integral of Pfaffian form of the
curvature form is equal to a constant multiple of its Euler number.

Most importantly, along this line, Chern introduced complex vector
bundles and their characteristic classes, including his secondary
characteristic form which is the generalization of the concept of
geodesic curvature.

Those characteristic classes are very important for the study of the
vector bundle and complex manifolds.
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complete manifolds

1 Every Cauchy sequence on a Riemannian manifold with metric
g converges to some point in M.

2 All geodesic curves starting at a point P can be extended
infinitely.

3 Every geodesic closed ball B̄(m, r) is compact.

4 Every bounded closed set is a compact set.
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Hopf-Rinow theorem

A beautiful theorem by Hopf and his student Willi Rinow (1931)
says that four properties listed above are equivalent.

And a consequence of this theorem says that every two points p, q
on such manifold can be connected by a geodesic which realized
the distance between p and q.
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Cohn-Vossen’s theorem

S. Cohn-Vossen (German mathematician, 1902 - 1936): Study the
Gaussian-Bonnet Integrals for complete open Riemann surfaces
with analytic metrics. His main result states:

Theorem (1935) If the Gaussian curvature of a complete open
Riemann surface M with analytic metric is absolutely integrable,
then the following inequality holds:∫

M
KdvM ≤ 2πχ(M) (1)

where χ(M) is the Euler number of M and K is the Gaussian
curvature of the metric.
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Huber’s generalization

A. Huber (German mathematician, ETH)(1957): (suggested by H.
Hopf) extended this inequality to metrics with much weaker
regularity. More importantly, he proved that such surface M is
conformally equivalent to a closed surface with finitely many
punctures.

His method is to study subharmonic functions on R2 and their
difference. Clearly it is analytic oriented. And also the two
dimensional complete Riemann surfaces have simple structure,
namely compact manifolds with finitely many points removed if the
total integral of the curvature is finite.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

Huber’s generalization

A. Huber (German mathematician, ETH)(1957): (suggested by H.
Hopf) extended this inequality to metrics with much weaker
regularity. More importantly, he proved that such surface M is
conformally equivalent to a closed surface with finitely many
punctures.
His method is to study subharmonic functions on R2 and their
difference. Clearly it is analytic oriented. And also the two
dimensional complete Riemann surfaces have simple structure,
namely compact manifolds with finitely many points removed if the
total integral of the curvature is finite.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

Finn’s identity for complete surface

R. Finn (Stanford, 1965): For a fairly large class of complete
surfaces, the deficit in Cohn-Vossen’s inequality is related to
isoperimetric ratio in the following formula:

χ(M)− 1

2π

∫
M
KdvM =

∑
j

νj

where the sum is taken over each end of M and νj on each end is
defined by

ν = lim
r→∞

L2(r)

4πA(r)

where L(r) is the length of the boundary circle ∂Br = {|x | = r}
and A(r) is the area of the annular region B(r)\K for any compact
set K .
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Poor’s extension for complete four manifold

W. A. Poor (1974) (only paper written by this author according to
mathscinet): Study the case for Cohn-Vossen’s inequality in
dimension 4 for non-negative curved complete manifolds

A complete Riemannian manifold M of nonnegative curvature
is diffeomorphic to the normal bundle of its soul (a concept
due to M. Gromov and J. Cheeger)

For oriented M of dimension 4, the total curvature is bounded
between zero and the Euler characteristic of M. Indeed,
assuming the truth of the algebraic Hopf conjecture, it is
shown that this is true for oriented M of any even dimension.
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Walter’s work

R. Walter (German mathematician)(1975): also generalize this
inequality to dimension 4.

What he did in this work is the following:
Let γ be constant times the Pfaffian form of the curvature form
and Ω be a locally convex compact subset of an oriented
Riemmannian manifold of dimension 2n, then∫

Ω
γ ≤ χ(Ω),

if n ≤ 3 and the sectional curvature is non-negative along the
boundary ∂Ω, otherwise it is still true if the curvature operator is
positive semi-definite.
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consequence of Walter’s work

As consequences of this result, he showed that

1 For a complete noncompact Riemannian 4−manifold with
non-negative sectional curvature, the total curvature

∫
M γ

exists and

0 ≤
∫
M
γ ≤ χ(M).

2 If n ≥ 3 above inequality also holds if we assume the
curvature operator is positive semi-definite.

Remark: The first result here is the generalization of the
well-known result of Chern and Milnor to the noncompact case.
And both consequences have been shown in previous mentioned
work by W. A. Poor.
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Greene-Wu’s work

R. Greene(UCLA) and H. Wu(UCB) (1976): generalized the
inequality to complete manifolds of positive sectional curvature
outside a compact set in dimension 4.

This paper is mainly concern with the existence of C∞ strictly
convex functions on a Riemannian manifold. Above quotation is
just one of the consequences of the general results they proved.
Other, for example includes the conclusion on Stein manifolds
under certain assumptions.
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Cheeger-Gromov’s work

J. Cheeger and M. Gromov (1985): Worked on
Gauss-Bonnet-Chern formula for complete manifolds with bounded
geometry and finite volume.

Basic assumption (bounded geometry): complete, of finite
volume and bounded curvature with some extra assumptions

Conclusion: the integrals of characteristic forms (the
Gauss-Bonnet form ) over a manifold M are always convergent

The limit values are referred to as geometric characteristic
numbers and denoted by χ(M, g)

Several examples: without those extra assumptions, the
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Yau’s question

Recent Development on this problem: S. T. Yau in his famous
problem section (problem 11.) asked how to generalize
Cohn-Vossen’s inequality or Finn/ Huber’s identity to higher
dimension.
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Chang-Qing-Yang’s work on R4

R4(1999): Chang, Qing and Yang

In this case they proved that if the metric e2wg0 is a complete
metric on R4 with absolutely integrable Q4 curvature and
nonnegative scalar curvature at infinity, then above Finn’s formula
holds with ν replacing by iso-perimetric ration µ defined as follows:

µ = lim
r→∞

[vol(∂Br (0))]4/3

4(2π2)1/3vol(Br (0))
.

That is, we have:

1− 1

8π2

∫
R4

Q4e
4wdx = µ.
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Chang-Qing-Yang’s work on M4

Theorem (Chang-Qing-Yang, 2000)
Suppose M is a locally conformally flat complete 4−manifold with
only finitely many conformally flat simple ends. And suppose that
the scalar curvature is non-negative at each eand, and the Q4

curvature is absolutely integrable. Then, we have

χ(M)− 2

3!ω4

∫
M
Q4dv =

l∑
k

µk ,

where in the inverted coordinates centered at each end,

µk = lim
r→∞

V3(∂Br (0))4/3

4(2π2)1/3Vol(Br (0)\B1(0))
.
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remark

� I should remind you that for a metric g on a four manifold, the
Paneitz curvature Q4 is defined by

Q4 =
1

6
{−∆R +

1

4
R2 − 3|E |2}

where E is the trace-less Ricci tensor.
While the integrand of Gauss-Bonnet-Chern is equal to |W |2 + Q4

where W is just Weyl tensor. In conformal flat case, W ≡ 0.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

remark

� I should remind you that for a metric g on a four manifold, the
Paneitz curvature Q4 is defined by

Q4 =
1

6
{−∆R +

1

4
R2 − 3|E |2}

where E is the trace-less Ricci tensor.

While the integrand of Gauss-Bonnet-Chern is equal to |W |2 + Q4

where W is just Weyl tensor. In conformal flat case, W ≡ 0.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

remark

� I should remind you that for a metric g on a four manifold, the
Paneitz curvature Q4 is defined by

Q4 =
1

6
{−∆R +

1

4
R2 − 3|E |2}

where E is the trace-less Ricci tensor.
While the integrand of Gauss-Bonnet-Chern is equal to |W |2 + Q4

where W is just Weyl tensor. In conformal flat case, W ≡ 0.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

remark

� Definition of Qn curvature and their associated differential or
pseudo-differential operators.

n = 2: Q2 =scalar curvature and P2 = −∆

n = 3: Q3 = something has never been written down explicitly.

P3 is just boundary operator of ∆2

n = 4: Q4 curvature defined by Paneitz with P4 as I pointed out
before. I should remind you that the definition of Q4 has different
version. But they are the same except a constant multiple. We
take this version just for convenience of the statement.
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remark

� n ≥ 5: It is almost impossible to explicitly write them out both
for Qn and for Pn. For n even, Qn is defined by T. Branson while
Pn was found by C. Robin Graham, R. Jennes, L.J. Mason, and
G.A.J. Sparling around 10 year ago. However, very recently, C.
Robin Graham and M. Zworski studied the Poincaré metrics on
M × [0, 1] and their scattering matrix recapture the Qn as well as
Pn when n is even. C. Fefferman and C. Robin Graham further
studied the case that n is odd and found both Qn and Pn in just
one place.
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remark

� Promising theory and deserves further study. Also relate to
Witten theory regarding Anti-de Sitter space/CFT correspondence
which is out of my control.

Roughly speaking, consider the manifolds as the boundary of one
dimensional higher manifolds N. If N has a very nice metric
structure, say Einstein metric with negative cosmological constant.
There exists a well defined defining function for the boundary.
Then the total volume should be infinity. However the volume of N
subtracting the ε−neighborhood should be finite and it depends on
ε. We can take Taylor expansion in ε, certain coefficient in this
expansion will depend only the conformal structure of the
boundary. This coefficient (so called the normalized volume) is
related to the quality we discussed above.
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

normal metric on Rn

First consider the complete metric e2wg0 on Rn with absolutely
integrable Qn curvature and nonnegative scalar curvature at
infinity. We shown that Finn’s formula holds with ν replacing by
iso-perimetric ratio µ defined as follows:

µ = lim
r→∞

[vol(∂Br (0))]n/(n−1)

n(ωn)1/(n−1)vol(Br (0))
.

That is, we have:

1− 2

(n − 1)!ωn

∫
Rn

Qne
nwdx = µ.
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

Qn− curvature

Notice that in conformally flat case, the Qn-curvature is simply
defined by

Qn(x) = e−nw(x)[(−∆)n/2w ](x).

Remark: We do not need to assume the dimension n is even.
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

mixed volume

It is well-known that in higher dimension, except above
iso-perimetric ratio, there are also the concept of mixed volumes
for a convex set in Rn, in particular, we can define them for the
boundary of the ball Br (x0) in Rn.

Such mixed volume concept has been considered by N. Trudinger
around 15 years ago.
For the conformal metric g = e2wg0, it is defined as

Vn(r) :=

∫
Br (0)

enwdx ;
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

iso-perimetric ratio

and

Vk(r)

:=
1

n

∫
∂Br (0)

rk−n+1(1 + r
∂w

∂r
)n−k−1ekwdσ;

for k = 1, 2, · · · , n − 1.

And now for all 1 ≤ j ≤ n − 1 and 1 ≤ k ≤ n − j , we define the
iso-perimetric ratios to be:

Ck,k+j(r) :=
V

(k+j)/[j(n−1)]
k

(nωn)1/(n−1)V
k/[j(n−1)]
k+j

.
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

statement I

Theorem: Suppose that e2wg0 is a smooth complete metric on Rn

with absolutely integrable Qn−curvature and non-negative scalar
curvature at infinity. Then∫

Rn

Qne
nwdy ≤ (n − 1)!ωn

2
,

and

α = lim
r→∞

Cn−1,n(r)

= 1− 2

(n − 1)!ωn

∫
Rn

Qne
nwdy ≥ 0.
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

statement I, continued

Theorem: Furthermore, if α > 0, then we also have

lim
r→∞

Ck,k+j(r) = α,

for all k and j satisfy above restrictions.
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

local version

Due to the limit understanding on Gauss-Bonnet-Chern formula for
higher dimensional manifolds, we have no general result for all
dimensions in this case. And as we all know that there is no such
formula for odd dimensions, we can only have a result in conformal
flat case.

General local conformally flat manifolds might still be too
complicated, specially their ends structure. Here our discussion will
be focused on some subclass of those manifolds.
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

locally conformal flat complete manifolds

Definition: (Simply connected, conformally flat Manifolds with
conformally flat simple ends)

Suppose (M, g) is given as

M = N ∪ {∪lk=1Ek}

where (N, g) is a compact locally conformal flat manifold with
boundary

∂N = ∪lk=1∂Ek
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

definition, continued

and each Ek is a conformal flat simple end of M; that is,

(Ek , g) = (Rn\B1(0), e2wkg0),

for some function wk , where B1(0) is the unit ball in Rn.

Then we say that (M, g) is a complete conformal flat
2m−manifold with a finite number of conformal flat simple ends.
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Locally conformal flat manifolds M of dimension 2m

definition, continued
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

statement II

With our discussion for complete conformal metric on Rn, and its
local version on Rn\B1(0), we can show the following Theorem.

Basic assumptions: Suppose that (M, g) is a complete conformal
flat n = 2m−manifold with a finite number of conformal flat
simple ends. Suppose that

(a) The scalar curvature is non-negative at infinity on each end;

(b) Its Qn curvature is absolutely integrable; that is,∫
M
|Qn|dv <∞.
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local version on Rn\B1(0), we can show the following Theorem.

Basic assumptions: Suppose that (M, g) is a complete conformal
flat n = 2m−manifold with a finite number of conformal flat
simple ends. Suppose that

(a) The scalar curvature is non-negative at infinity on each end;

(b) Its Qn curvature is absolutely integrable; that is,∫
M
|Qn|dv <∞.
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

statement II, continued

Conclusion:

χ(M)− 2

(n − 1)!ωn

∫
M
Qndv =

l∑
k=1

µk ,

where

µk = lim
r→∞

[
∫
∂Br (0) e

(n−1)wkdσ]n/(n−1)

n(ωn)1/(n−1)
∫
Br (0) e

nwkdx
.

In particular, we have, for such manifolds,

χ(M) ≥ 2

(n − 1)!ωn

∫
M
Qndv .
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Complete metric on Rn

Locally conformal flat manifolds M of dimension 2m

remark

This last inequality has been shown to be true by H. Fang
(Calculus of Variation and PDE) (2005)

This result provides some inside information for what
Chern-Gauss-Bonnet’s formula really means.

Rn version formula has been reproved recently by C. B.
Ndiaye and J. Xiao, preprint 2008.
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negative sectional curvature case

We notice that J. Cao and F. Xavier show that the Euler
number χ(M2n) of a compact Riemannian manifold M2n of
non-positive curvature which is homeomorphic to a KÅ¡ahler
manifold must satisfy the inequality

(−1)nχ((M2n) ≥ 0.

Does this have something to do with our case? Notice that, in
this case, the universal covering space is diffeomorphic to Rn.
So it will have only one end. In our study it requires
conformal flat end.
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positive sectional curvature case

This case should be easier since, according to Cheeger and
Gromoll’s famous splitting theorem, M can be written as
M̄ × Rk which has simple end structure.

Clearly it is not that simple. The Gauss-Bonnet-Chern
integrand is very complicated for high dimensional manifolds.

Notice that Greene and Wu’s result in dimension 4 is within
this category.
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hyper-surfaces

Dillen, Franki and Kemhnel, Wolfgang(Total curvature of complete
submanifolds of Euclidean space Tohoku Math. J. (2) 57, no. 2
(2005), 171-200)

For higher dimensional hyper-surfaces, the curvature defect
can be positive, zero, or negative, depending on the shape of
the ends ”at infinity”.

An explicit example of a 4-dimensional hyper-surface in
Euclidean 5-space where the curvature defect is negative is
given. The direct analogue of the Cohn-Vossen inequality
does not hold.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

hyper-surfaces

Dillen, Franki and Kemhnel, Wolfgang(Total curvature of complete
submanifolds of Euclidean space Tohoku Math. J. (2) 57, no. 2
(2005), 171-200)

For higher dimensional hyper-surfaces, the curvature defect
can be positive, zero, or negative, depending on the shape of
the ends ”at infinity”.

An explicit example of a 4-dimensional hyper-surface in
Euclidean 5-space where the curvature defect is negative is
given. The direct analogue of the Cohn-Vossen inequality
does not hold.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

hyper-surfaces

Dillen, Franki and Kemhnel, Wolfgang(Total curvature of complete
submanifolds of Euclidean space Tohoku Math. J. (2) 57, no. 2
(2005), 171-200)

For higher dimensional hyper-surfaces, the curvature defect
can be positive, zero, or negative, depending on the shape of
the ends ”at infinity”.

An explicit example of a 4-dimensional hyper-surface in
Euclidean 5-space where the curvature defect is negative is
given. The direct analogue of the Cohn-Vossen inequality
does not hold.

Xingwang Xu Geometry, Analysis and Topology



Outline
Surfaces

Riemmanian Manifolds
Complete manifolds

New Development
Final Remark

hyper-surfaces, continued

For open hyper-surfaces with cone-like ends, the total
curvature is stationary for deformation ⇔ each end has
vanishing Gauss-Kronecker curvature in the sphere ”at
infinity”. For this case of stationary total curvature we prove
a result on the quantization of the total curvature.

Does our result have anything to do with this?
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the end

Thank You Very Much!
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